
Experience Report: Security Vulnerability Profiles of Mission Critical Software:
Empirical Analysis of Security Related Bug Reports

Katerina Goseva-Popstojanova and Jacob Tyo

Lane Department of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV, USA

Email: Katerina.Goseva@mail.wvu.edu

Abstract—While some prior research work exists on char-
acteristics of software faults (i.e., bugs) and failures, very little
work has been published on analysis of software applications
vulnerabilities. This paper aims to contribute towards filling
that gap by presenting an empirical investigation of application
vulnerabilities. The results are based on data extracted from
issue tracking systems of two NASA missions. These data were
organized in three datasets: Ground mission IV&V issues,
Flight mission IV&V issues, and Flight mission Developers
issues. In each dataset, we identified the security related soft-
ware bugs and classified them in specific vulnerability classes.
Then, we created the vulnerability profiles, i.e., determined
where and when the security vulnerabilities were introduced
and what were the dominant vulnerabilities classes. Our main
findings include: (1) In IV&V issues datasets the majority of
vulnerabilities were code related and were introduced in the
Implementation phase. (2) For all datasets, close to 90% of
the vulnerabilities were located in two to four subsystems.
(3) Out of 21 primary vulnerability classes, five dominated:
Exception Management, Memory Access, Other, Risky Values,
and Unused Entities. Together, they contributed from around
80% to 90% of vulnerabilities in each dataset.

Keywords-application security; software vulnerability; secu-
rity vulnerability profile; mission critical software.

I. INTRODUCTION

Nowadays space missions provide valuable services to

the society – from navigation, to earth observation, weather

forecasting, and communication. Consequently, space mis-

sions are becoming part of the critical infrastructure and

are regularly targeted by attackers. In a typical week NASA

experiences 29,000 malicious incidents against its systems,

17,500 suspicious e-mails, and 250 unique incidents against

its web sites [1]. Furthermore, cybersecurity threats to space

missions are expected to continue to grow in the future [2].

The multi-tiered approach to cybersecurity management

integrates the IT service security, data and application secu-

rity, and infrastructure security [1]. This paper is focused

on application security, which is an important aspect of

the overall cybersecurity. Thus, once an attacker has gained

access to an internet-accessible computer, he/she could use

the compromised computer to exploit vulnerabilities on

mission computers that could significantly disrupt space

flight operations and/or steal sensitive data [3]. Therefore, it

is becoming an imperative to use software development and

assurance practices that account for cybersecurity concerns.

A security vulnerability is defined as a weakness in a

system, application, or network that could be subject to

exploitation or misuse that would allow an attacker to

compromise any aspect of cybersecurity (i.e., confidentiality,

integrity, availability, authentication, authorization, and non-

repudiation). The work presented in this paper is focused

on application vulnerabilities and is based on utilizing the

information provided in issue tracking systems. Specifically,

our work is focused on analyzing software bug reports and

identifying those that are security related. In this context,

we use the terms ‘vulnerability’, ‘security related bug’,

and ‘security issue’ interchangeably. Note that our study

accounts for vulnerabilities that may have been introduced,

found, and fixed throughout the software lifecycle.
In this paper, we introduce the term security vulnerability

profile which is defined as a set of data that describes where

and when the security vulnerabilities were introduced and

what were the dominant vulnerability classes. We believe

that security vulnerability profiles and their underling trends

support in-depth understanding of the nature of vulnerabili-

ties and can help developers and Independent Verification

and Validation (IV&V) analysts to prevent, detect, and

eliminate the vulnerabilities in the most effective ways, at

the most effective time.
The results presented in this paper are based on data

extracted from issue tracking systems of two NASA mis-

sions. These data were organized in three datasets: Ground

mission IV&V issues, Flight mission IV&V issues, and

Flight mission Developers issues. In each dataset, we iden-

tified the security related bugs and classified them in spe-

cific vulnerability classes from the Common Weakness and

Enumeration (CWE) view CWE-888 [4], [5]. Then, we

created the vulnerability profiles and explored the existence

of trends. Our main research questions are as follows:

RQ1: What are the security issues’ categories and types?

RQ2: Where are security issues located?

RQ3: When are security issues typically introduced and

found?

RQ4: What are the severity levels of security issues?

RQ5 What are the dominant classes of security issues?

RQ6 Are the dominant classes of security issues and

the other findings consistent across missions and

datasets?

The main findings of our work include:

• Code related security issues dominated both the Ground

and Flight mission IV&V security issues, with 95% and

92%, respectively. Therefore, enforcing secure coding

2017 IEEE 28th International Symposium on Software Reliability Engineering

2332-6549/17 $31.00 © 2017 IEEE

DOI 10.1109/ISSRE.2017.42

152

practices and verification and validation focused on

coding errors would be cost effective ways to improve

missions’ security. (Flight mission Developers issues

dataset did not contain data in the Issue Category.)

• The location of security issues, as the location of

software bugs in general, followed the Pareto principle.

Specifically, for all three datasets, close to 90% of

security issues were located in two to four subsystems.

• In both the Ground and Flight mission IV&V issues

datasets, the majority of security issues (i.e., 91% and

85%, respectively) were introduced in the Implemen-

tation phase. In most cases, the phase in which the

security issues were found was the same as the phase

in which they were introduced. The most security

related issues of the Flight mission Developers issues

dataset were found during Code Implementation, Build

Integration, and Build Verification; the data on the

phase in which these issues were introduced were not

available for this dataset.

• The severity levels of most security issues, as the ma-

jority of all issues, were moderate in all three datasets.

• Out of 21 primary vulnerability classes, five classes

dominated: Exception Management, Memory Access,

Other, Risky Values, and Unused Entities. Together,

these classes contributed from around 80% to 90% of

all security issues, in each dataset. This again proves

the Pareto principle of uneven distribution of security

issues, in this case across vulnerability classes, and

supports the fact that addressing these dominant vulner-

ability classes provides a cost efficient way to improve

missions’ security.

The rest of the paper is organized as follows. Section II

summarizes the related works. Section III describes the

classification approach. The two NASA missions and three

created datasets are described in section IV. The results for

each dataset are presented in section V, followed by the com-

parison of the results across all three datasets in section VI.

The threats to validity are enumerated in section VII and the

conclusion is presented in section VIII.

II. RELATED WORK

While prior research work exists on characteristics of

software faults (i.e., bugs) and failures, very little work

has been published on analysis of software applications

vulnerabilities. We first summarize the papers that explored

the characteristics of software faults in general, without any

focus on security aspects (i.e., vulnerabilities).

Fenton and Ohlsson studied a large telecommunication

application and focused on a range of software engineering

hypotheses related to the Pareto principle of distribution of

faults and failures, the use of early fault data to predict later

fault and failure data, and metrics for fault prediction [6].

Our previous research works, which were based on data

extracted from a large NASA mission with over two millions

lines of code, were focused on characterizing and quantify-

ing the relationships among faults, failures and fixes. The

results showed that software failures were often associated

with faults spread across multiple files [7]. The results

further showed that a significant number of software failures

required fixes in multiple software components and/or multi-

ple software artifacts, and that the combinations of software

components that were fixed together were affected by the

software architecture [8]. In addition, we studied the types

of faults, activities taking place when faults were detected

or failures were reported, and the severity of failures [9].

The results showed that both post-release and safety-critical

failures were more heavily associated with coding faults

than with any other type of faults. We also analyzed the fix

implementation effort and proposed a data mining approach

for predicting its levels [10].

Another empirical study based on space mission data,

conducted by Grottke et al., analyzed 520 anomalies from

the flight software of eighteen JPL space missions and

reported that 61% of bugs were Bohrbugs (i.e., bugs that

are easily isolated and removed during software testing) and

37% were Mandelbugs (i.e., bugs that behave chaotically)

[11]. In a follow up work, Alonso et al. analyzed the

mitigation associated with the Bohrbugs and Mandelbugs

[12]. Then, based on the analysis of bug reports of four

open-source software systems, Cotroneo at al. [13] classified

software bugs as Bohrbugs, non-aging-related Mandelbugs,

and aging-related bugs.

The information extracted from bug tracking systems of

open source applications was used for research with different

goals. For example, Duraes and Madeira [14] explored the

bug reports of 12 open source programs and classified a

total of 668 faults using the Orthogonal Defect Classification

(ODC) [15] with a goal to establish the fault representa-

tiveness for software fault injection experiments. Xia et al.

utilized the bug tracking systems and code repositories of

four open source software applications, having from 151

to 250 bug reports, which were classified into several fault

categories [16].

Other papers explored software faults for different ap-

plication domains. Gashi et al. studied the bug reports of

four off-the-shelf SQL servers, with a focus on common

faults among them, and concluded that diverse redundancy

would be effective for tolerating design faults [17]. Maji

et al. utilized bug reports, bug fixes, developer reports, and

failure reports to explore the manifestation of failures in

Android and Symbian [18]. Ocariza et al. studied the error

messages printed by JavaScript as it executes in popular

websites [19] and explored JavaScript faults based on 317

bug reports extracted from 12 bug repositories [20]. Frattini

et al. analyzed 146 bug reports from the open source cloud

platform Apache Virtual Computing Lab [21] and identified

the components where bugs were likely to be found, the

lifecycle phases during which such bugs may be discovered,

153

and the modification required to fix them. Di Martino et al.

analyzed the failures of the Blue Waters, the Cray hybrid

(CPU/GPU) supercomputer, and found that software was

the largest contributor to the node repair hours (53%), even

though it caused only 20% of the total number of failures

[22].

Next, we discuss the research works that considered soft-

ware vulnerabilities, either implicitly or explicitly. Several

papers were focused on exploring the effectiveness of dif-

ferent techniques and/or tools for detection of software vul-

nerabilities. Specifically, Austin et al. used three electronic

health record systems as case studies with a goal to compare

four vulnerability discovery techniques [23]. Other research

works were focused on web services domain and tested the

tools’ effectiveness for detection of vulnerabilities related

to SQL injection, XPath injection, or XSS attacks [24],

[25], [26], [27]. Another work studied the characteristics of

benign, vulnerable, and malicious browser extensions and

proposed an approach to detect vulnerable and malicious

browser extensions [28]. Note that these works [23], [24],

[25], [26], [27], [28] only implicitly addressed the types

of vulnerabilities, from the perspective of tools’ detection

capabilities.

Two works [29], [30] explored aspects of operating sys-

tems’ vulnerabilities based on the Common Vulnerabilities

and Exposures (CVE) information [31]. Consequently, these

works were based on vulnerabilities that were discovered

post-release. In particular, Alhazmi et al. considered both

commercial and open-source OSes and discovered that the

vulnerability densities fell within a range of values and that

the vulnerability discovery can be modeled using a logistic

model [29]. Similarly, Garcia et al. utilized the CVE data

to study the vulnerabilities of eleven OSes with a goal to

check how many of these vulnerabilities occur in more than

one OS [30].

The security vulnerabilities published in the Bugtraq

database and as CERT advisories were analyzed by Chen

et al. in [32] and [33], respectively. Specifically, out of the

twelve classes used to classify 5,925 Bugtraq reports on

software related vulnerabilities, five classes dominated: input

validation errors (23%), boundary condition errors (21%),

design errors (18%), failure to handle exceptional conditions

(11%), and access validation errors (10%) [32]. The results

of the data analysis were then combined with the source code

examination to develop finite state machine (FSM) models

that can be used to reason about security vulnerabilities. In

a closely related work, the analysis of 107 CERT advisories

showed that vulnerabilities of the following four types

dominated: buffer overflow (44%), integer overflow (6%),

heap corruption (8%), and format-string vulnerabilities (7%)

[33]. The authors then proposed detection and/or masking

techniques (i.e., memory layout randomization, control data

randomization, and static analysis approach based on the

notion of pointer taintedness).

Two related works that had similar main goal as ours –

to study the security vulnerabilities – were focused on the

web application domain [34], [35]. Fonseca and Vieira [34]

explored 655 XSS and SQL injection security patches of

six widely used web applications and classified the faults in

each patch according to ODC [15]. The results showed that

76% of all faults found were of the Missing Function Call

Extended (MFCE) type, which belongs to the ODC type

‘Algorithm’. This high value was due to the massive use

of specific functions to validate and clean data that come

from the outside of the web applications. In a follow-up

study, also focused on XSS and SQL injection, Fonseca et al.

analyzed the source code of security patches of widely used

web applications written in weak and strong typed languages

[35]. The analysis of the weak typed language applications

was based on the results presented in [34] and showed that

XSS and SQL injections had similar percentages of MFCE

type faults. For the strong typed language applications, the

authors analyzed a sample of 60 XSS and SQL injection

vulnerabilities from 11 web applications developed in Java,

C#, and VB. MFCE was again the most frequent fault type,

accounting for around 63% of the total number of faults.

In this case, however, most of these faults (i.e., around

89%) were related to XSS vulnerabilities. Concerning SQL

injection vulnerabilities, no single fault type dominated;

MFCE with 21% and MIEB (i.e., Missing if construct plus

statements plus else before statements) with 26% were the

two most frequent fault types, followed by several other fault

types.

III. CLASSIFICATION APPROACH

In order to classify the security related bugs (i.e., vulnera-

bilities), a classification schema is needed. An obvious can-

didate for a classification schema is the Common Weakness

and Enumeration (CWE) taxonomy of software weakness

types, which serves as a common language for describing

software security weaknesses in architecture, design, or code

[36]. Each individual CWE represents a single vulnerability

category. CWEs are organized in a hierarchical structure

with broad category CWEs at the top level. The further down

this hierarchy, the more specific the vulnerabilities become.

The CWE taxonomy has 1006 CWEs and rather complex

structure; each CWE may have one or more parents (expect

the top level CWEs) and zero or more children. Therefore,

using the complete CWE taxonomy for classification of

software vulnerabilities is not very practical, which is the

reason why a number of views have been developed to

ease the grouping of similar CWEs and provide simpler

structures. These include: CWE-1000 [37], CWE-888 [4],

[5], CWE-700 [38], [39], and CWE-699 [40].

Upon close review, we selected CWE-888 Software Fault

Pattern (SFP) View as classification schema because it

provides intuitive hierarchical structure, with a good trade-

off between the level of details and generality. CWE 888

154

Table I. PRIMARY CLASSES, THEIR DEFINITIONS AND THE CORRESPONDING SECONDARY CLASSES

Primary class Definition and corresponding secondary classes
Risky Values Relates to the basic uses of numerical values in software systems. Secondary class: Glitch in Computation.
Unused Entities Covers unused entities in code, including unused procedures or variables. Secondary class: Unused Entities.
API Relates to the use of Application Programming Interfaces (API). Secondary class: Use of an Improper API
Exception Management Relates to management of exceptions and other status conditions. Secondary classes: Unchecked Status Condition, Ambiguous

Exception Type, and Incorrect Exception Behavior.
Memory Access Relates to access to memory buffers. Secondary classes: Faulty Pointer Use, Faulty Buffer Access, Faulty String Expansion,

Incorrect Buffer Length Computation, Improper NULL termination.
Memory Management Relates to the management of memory buffers. Secondary classes: Faulty Memory Release.
Resource Management Relates to management of resources (i.e., dynamic entities). Secondary classes: Unrestricted Consumption, Failure to Release

Resource, Faulty Resource Use, Life Cycle.
Path Resolution Relates to access to file resources using complex file names. Secondary classes: Path Traversal, Failed Chroot Jail, Link in

Resource Name Resolution
Synchronization Relates to the use of shared resources. Secondary classes: Missing Lock, Race Condition Window, Multiple Locks/Unlocks,

Unrestricted Lock.
Information Leak Relates to the export of sensitive information from an application. Secondary classes: Exposed Data, State Disclosure,

Exposure Through Temporary File, Other Exposures, Insecure Session Management.
Tainted Input Relates to injection of user controlled data into various destination commands. Secondary classes: Tainted Input to Command,

Tainted Input to Variable, Composite Tainted Input, Faulty Input Transformation, Incorrect Input Handling, Tainted Input to
Environment.

Entry Points Relates to unexpected entry points into the application. Secondary class: Unexpected Access Points.
Authentication Relates to establishing the identity of an actor associated with the computation, or the identity of the endpoint involved in the

computation through a certain channel. Secondary classes: Authentication Bypass, Faulty Endpoint Authentication, Missing
Endpoint Authentication, Digital Certificate, Missing Authentication, Insecure Authentication Policy, Multiple Binds to the
Same Port, Hardcoded Sensitive Data, Unrestricted Authentication.

Access Control Relates to validating resource owners and their permissions. Secondary classes: Insecure Resource Access, Insecure Resource
Permissions, Access Management.

Privilege Relates to code regions with inappropriate privilege level. Secondary class: Privilege.
Channel Relates to various protocol issues. Secondary classes: Channel Attack, Protocol Error.
Cryptography Relates to cryptography issues. Secondary classes: Broken Cryptography, Weak Cryptography.
Malware Relates to any malicious code present in the software system. Secondary classes: Malicious Code, Covert Channel.
Predictability Relates to random number generators and their properties. Secondary class: Predictability.
UI Relates to security issues of User Interfaces (UI). Secondary classes: Feature, Information Loss, Security.
Other Relates to miscellaneous architecture, design, and implementation issues. Secondary classes: Architecture, Design, Imple-

mentation, Compiler.

contains 705 CWEs organized in a three level hierarchical

structure, of which the first two levels (primary and sec-

ondary classes) were used for our classification. Namely,

we assigned each security related software bug to a pri-

mary (more general) class and the corresponding secondary

(more specific) class. Overall, there are 21 primary and 62

secondary classes (see Table I). More detailed descriptions

and the specific CWE numbers can be found in [4].

We conducted manual classification of software bug re-

ports in all three datasets using the information provided

in the ‘Title’, ‘Subject’, ‘Description’, ‘Recommended Ac-

tions’, and ‘Solution’ fields from the issue tracking systems.

Similarly to the classification done by static code analysis

tools, we adopted a conservative classification approach

that treats as security related every bug report that can be

assigned a CWE-888 class. For example, the bug report

with description “. . . The stream is opened on line 603 of

file1. If an exception were to occur at any point before

line 613 where it is closed, then the ‘try’ would exit and

the stream would not be closed,” was classified as the

primary class ‘Resource Management’ and the secondary

class ‘Failure to Release Resource.’ On the other side,

the bug report with description “. . . Table 1-11 lists XYZ

as a unidirectional interfaces, but Figure 1-4 shows this

connection as bidirectional,” was classified as non-security

related.

Note that we did not have access to the code and other

information needed to determine if the security issues (i.e.,

vulnerabilities) could be easily exploited or what the overall

impact on the system would be if a vulnerability was

successfully exploited. Therefore, these aspects are out of

the scope of our work.

IV. DESCRIPTION OF THE DATASETS

The three datasets used for this work were created by

extracting relevant information from the issue tracking sys-

tems of two NASA missions. For all three datasets, only

the issues that were marked as bug reports and were closed

were included in the analysis.

The first dataset was extracted from the IV&V issue track-

ing system of a NASA ground mission and is referred to as

Ground mission IV&V issues. The ground mission software

consists of approximately 1.36 million source lines of code

and the issue tracking system contained 1,779 issues created

over four years. Since this is a recent mission, the IV&V

analysts specifically considered the impact of each issue

on security, and as a result 350 of the issues were marked

as security related and their descriptions contained security

155

related information. Based on the manual classification, we

assigned specific CWEs to 133 of the 350 security issues.

The remaining security issues were tagged by the IV&V

analysts as testing issues. Since testing issues do not deal

with the actual software under investigation and no CWEs

exist that cover such issues, testing issues were excluded

from the further analysis. (Note that the ground mission

developers’ issues were not available to the research team.)

The second dataset consists of the IV&V issues extracted

from the issue tracking system of a NASA flight mission

and is referred to as Flight mission IV&V issues. The flight

mission software had approximately 924 thousand source

lines of code, and the issue tracking system contained 383

issues. It should be noted that the IV&V issues of the

Flight Mission neither were tagged as security related by

the IV&V analysts nor the security aspects of the issues

were specifically and consistently addressed in the issues’

descriptions. We manually classified these 383 issues, out

of which 157 issues appeared to be security related.

The third dataset consists of issues extracted from the

developers’ issue tracking system of the same NASA flight

mission and is referred to as Flight mission Developers
issues. This issue tracking system contained 573 closed

bug reports. As in case of the Flight mission IV&V issues

dataset, security aspects of developers’ issues were not

specifically addressed in the descriptions and issues were not

tagged as security / not security related. Based on manual

classification, we marked 374 bug reports (out of 573) as

security related and assigned them specific CWE classes.

The basic facts of the two missions and the three datasets

are summarized in Table II.

Table II. BASIC FACTS ABOUT THREE DATASETS

Total # Security
Mission Size closed bug related bug Dataset

reports reports

Ground 1.36 MLOC 1,779 133 Ground mission IV&V

Flight 924 KLOC 383 157 Flight mission IV&V
573 374 Flight mission Developers

V. VULNERABILITY PROFILES

In this section we present the results for each of the three

datasets. (As described in section IV, the term ‘issue’ refers

to ‘closed bug reports’.)

A. Ground Mission IV&V Issues

Figure 1 shows the distribution of issues (i.e., bug reports)

across different Issue Categories. As shown, the Code cat-

egory contained 95% of all security issues. Even though

the Design category had the highest number of issues, only

around 2% of security issues belonged to this category.

Figure 2 shows the distribution of issues across different

Issues Types, which provide more detailed categorization

than the Issue Category. Two most dominant security issue

types were Incomplete Code and Incorrect Code, which

together contained 84% of all security related issues.

Figure 1. Issue Categories of the Ground mission IV&V issues

Figure 2. Issue Types of the Ground mission IV&V issues

Figure 3. Distribution of Ground mission IV&V issues across subsystems

Figure 3 shows the breakdown of issues across subsys-

tems, ordered from the subsystem with the highest total

156

Figure 4. Distribution of Ground mission IV&V issues across Analysis Methods

number of issues to the subsystem with the least issues.

Subsystems 1 and 2 contributed 86% of all security issues

and 70% of all issues, which shows that Pareto principle1

applies to security related issues, as well as to the total

number of issues.

Figure 4 shows the distribution of issues with respect to

the analysis method used to detect the issues. The largest

proportion of total issues (30%) was found using Design

Analysis; however this method did not uncover any security

issues. The vast majority of security issues were discov-

ered using Implementation Analysis (Static Code Analysis).

Specifically, this method led to finding 91% of all security

related issues2. It should be noted that the amount of time

and effort invested in using each Analysis Method affect

the number of issues (including security issues) detected by

that method. Unfortunately, the time and effort used for each

Analysis Method were not tracked, and therefore we cannot

draw conclusions about the effectiveness of the Analysis

Methods based on the results presented in Figure 4.

The distribution of issues across different severity levels

is shown in Figure 5. NASA’s Severity levels range from 1

to 5, with 1 being the most severe. As shown in Figure 5,

86% of all security related issues had severity level 3, as

well as the majority of all issues (72%).

Figures 6 and 7 detail the phase in which issues were

introduced and found, respectively. (Note that this mission is

under development and has not entered the Test phase yet.)

The majority of security issues (91%) were introduced in

the Implementation Phase, which indicates how hard it is to

implement secure code. This result also shows that efforts to

1Pareto principle indicates skewed distribution of software faults, that
is, that majority of faults (e.g., roughly 80%) are located in small percent
(e.g., 20%) of software units (e.g., subsystems or files.)

2Static code analysis tools are known to produce high number of false
positives [41]. In this case the output produced by the static code analysis
tool was manually inspected by the IV&V analysts and only true positive
warnings were entered as bug reports in the issue tracking system.

Figure 5. Severity levels of Ground mission IV&V issues

Figure 6. Ground mission IV&V issues: Phase Introduced

Figure 7. Ground Mission IV&V issues: Phase Found

enforce secure coding standards would lead to cost effective

improvement of mission’s security. Comparing Figures 6 and

7 can be observed that the phase in which issues were found

closely followed the phase in which they were introduced,

which illustrates the effectiveness of the IV&V activities.

Next, we focus on the distribution of the security related

issues across the primary classes shown in Table I. As

157

Figure 8. Ground mission IV&V issues: Distribution across primary
classes. The numbers in brackets represent the specific CWE numbers of
the primary classes.

Figure 9. Issue Categories of Flight mission IV&V issues

can be seen in Figure 8, the IV&V security issues of the

ground mission belonged to only 11 out of the total 21

primary classes. The Memory Access dominated, containing

54.6% of all security issues. Furthermore, only five primary

classes (i.e., Memory Access, Unused Entities, Exception

Management, Risky Values, and Resource Management)

contained around 95% of all security issues. This result

shows that the Parato principle applies to the distribution

of the security issues across primary classes as well.

B. Flight Mission IV&V Issues

As shown in Figure 9, 92% of all security related issues

were associated with the Code Issue Category. This distribu-

tion of security related issues is consistent with the results

for the Ground mission IV&V issues. Figure 10 shows the

distribution of Flight mission IV&V issues across Issue

Types, which provide more detailed information than the

Issue Category. The results show that security issues were

predominately associated with Incorrect Code, Incomplete

Code, Missing Code, Extraneous Code, and Inconsistent

Code.

The distribution of issues across Flight mission subsys-

tems presented in Figure 11 shows that 88% of all security

issues (and 88% of all issues) fell into three out of five

subsystems. (Subsystems in Figure 11 are ordered by the

total number of issues.)

As shown in Figure 12, severity levels 3 and 4 together

contained 79% of all security issues and 86% of all issues.

The fact that not many security issues had high Severity

levels (i.e., 1 and 2) is consistent with the Ground mission

IV&V security issues.

Figure 10. Issue Types of Flight mission IV&V issues

Figure 11. Distribution of Flight Mission IV&V issues across Subsystems

Figure 12. Severity levels of Flight Mission IV&V issues

Figures 13 and 14 also show results consistent with

the Ground Mission IV&V issues, with the majority of

security issues introduced (85%) and found (85%) in the

Implementation phase. The Flight Mission IV&V Issues

dataset, in addition, included information on the phase in

which the issues were resolved. As can be seem in Figure

15, 75% of security related issues were resolved in the

Implementation phase, and the remaining 25% were resolved

in the Testing phase.

Next, we focus on the distribution of security issues

across the primary classes, which is presented in Figure 16.

Similarly as in the case of the Ground Mission IV&V Issues,

158

Figure 13. Flight Mission IV&V issues: Phase Introduced

Figure 14. Flight Mission IV&V issues: Phase Found

Figure 15. Flight Mission IV&V issues: Phase Resolved

Figure 16. Flight Mission IV&V issues - Distribution of issues across
primary classes. The numbers in brackets represent the specific CWE
numbers of the primary classes.

IV&V issues of the Flight mission belonged to only 9 out of

the 21 primary classes, with four dominant classes: Other,

Risky Values, Memory Access, and Unused Entities.

C. Flight Mission Developers Issues

The developers’ issue tracking system of the flight mission

did not contain the Issue Category field. Figure 17 shows

the distribution of issues across Issue Types. The two Issues

Types – ‘Incorrect Operation or Unexpected Behavior’ and

‘Incorrect Implementation’ – significantly outnumbered the

other Issue Types.

Figure 18 presents the distribution of issues across the

Flight mission subsystems, ordered by the total number

of issues. The finding is similar to the previous datasets,

Figure 17. Issue Types of Flight mission Developers issues

Figure 18. Distribution of Flight mission Developers issues across
Subsystems

Figure 19. Severity levels of Flight mission Developers issues

again proving the Pareto principle, with 88% of all security

issues found in only four subsystems (out of thirteen), which

together accounted for 89% of all issues. (While more

subsystems appeared in the Developers issue tracking system

than in the IV&V issue tracking system of the flight mission,

the three most fault prone subsystems in both Figures 11 and

18 are the same.)

The severity levels used in this dataset were: Minor,

Moderate, and Critical. As shown in Figure 19, the results

related to the severity of the Flight mission Developers issues

were consistent to the previously analyzed datasets; the

moderate severity level dominated, containing 86% of the

security issues, and 85% of the total number of issues. Only

4% of all issues, and 4% of security issues were determined

to be critical.

This dataset contained information about the phase in

which the issues were found, but no information on when

they were introduced or resolved. As shown in Figure 20,

most issues were found during the following there phases:

159

Figure 20. Flight mission Developers issues: Phase Found

Figure 21. Flight mission Developers issues - Distribution across primary
classes. The numbers in brackets represent the specific CWE numbers of
the primary classes.

Code Implementation, Build Integration, and Build Verifica-

tion. These more fine grained phases are consistent with the

Phase Found categories that dominated the IV&V issues.

Next, we focus on the classification of the security issues.

Similarly as for the other two datasets, as shown in Figure

21, only 13 out of 21 primary class were observed, with three

dominant classes: Risky Values, Exception Management,

and Memory Access.

VI. COMPARISON OF THE RESULTS ACROSS DATASTES

In this section we compare the results across all three

datasets. We start with comparing the distribution of security

issues across the primary classes, extracted from the results

presented in subsections V-A, V-B, and V-C. As can be seen

in Table III even though fifteen (out of 21) primary classes

had nonzero security issues for at least one dataset, the

vast majority of security issues were distributed among five

dominant primary classes: Exception Management, Memory

Access, Other, Risky Values, and Unused Entities. Specif-

ically, these five primary classes together contained 90%,

87%, and 79% of the security issues in the Ground mission

IV&V, Flight mission IV&V and Flight mission Developers

issues, respectively.

Table III. COMPARISON OF PRIMARY CLASSES (WITH NONZERO

SECURITY ISSUES) ACROSS THE THREE DATASETS. THE FIVE

DOMINANT CLASSES ARE SHARED GRAY.

Primary class Ground Mission Flight Mission
IV&V
Issues

IV&V
Issues

Developer
Issues

API (887) 1.9%

Authentication (898) 0.9%

Channel (902) 2.7% 6.0%

Exception Management (889) 10.8% 8.2% 27.2%

Memory Access (890) 54.6% 18.3% 12.8%

Memory Management (891) 0.4%

Other (907) 1.5% 24.5% 7.1%

Predictability (905) 0.8%

Privilege (901) 1.2%

Resource Management (892) 6.9% 3.0%

Risky Values (885) 8.5% 21.8% 28.3%

Synchronization (894) 0.8% 3.4%

Tainted Input (896) 1.5% 8.2% 3.8%

UI (906) 0.9% 1.1%

Unused Entities (886) 14.6% 14.5% 3.8%

Table IV. SECONDARY CLASSES, FOR THE FIVE DOMINANT PRIMARY

CLASSES

Secondary class Ground Mission Flight Mission
IV&V IV&V Developer
Issues Issues Issues

Exception Management (889)
Ambiguous Exception Type (960) 7.7%

Incorrect Exception Behavior (961) 4.6% 14.0%

Unchecked Status Condition (962) 3.1% 3.6% 13.2%

Memory Access (890)
Faulty Buffer Access (970) 4.6% 12.7% 8.3%

Faulty Pointer Use (971) 50.0% 5.6% 4.5%

Other (907)
Architecture (975) 0.9%

Design (977) 2.6%

Implementation (978) 1.5% 23.6% 4.5%

Risky Values (885)
Glitch in Computation (998) 8.5% 21.8% 28.3%

Unused Entities (886)
Dead Code (561) 14.6% 10.0% 3.4%

Unused Variable (563) 4.5% 0.4%

Table IV shows the five dominant primary classes along

with their corresponding secondary classes, which provide

more detailed information on the nature of security issues.

The secondary classes under the Exception Management pri-

mary class included: Ambiguous Exception Type, Incorrect

Exception Behavior, and Unchecked Status Condition. Note

that ‘Failure to handle exceptional conditions’ was among

dominant classes of Bugtraq vulnerabilities analyzed in [32].

Security issues assigned to the primary class Memory

Access were distributed across the secondary classes Faulty

Buffer Access and Faulty Pointer Use. These categories

include common programming errors such as null pointer

dereferences and buffer overflows. Not surprisingly, faulty

memory access (including buffer overflows) were among

prevalent vulnerability classes in both [32] (belonging to the

boundary condition errors) and [33] (belonging to the buffer

overflows and heap corruption classes).

The primary class Other had security issues distributed

predominately in the secondary class Implementation, which

is based around weaknesses such as coding standards vi-

olation or containment errors. The secondary classes Ar-

chitecture and Design had significantly less issues. (Note

that issues were assigned to the primary class Other and the

160

Table V. MAIN FINDINGS ABOUT SECURITY ISSUES ACROSS ALL DATASETS

Ground mission IV&V issues Flight mission IV&V issues Flight mission Developers issues RQ
Issue category 95% Code related 92% Code related Data not available RQ1
Subsystem 86% found in two subsystems

(70% of all issues)
88% in three subsystems (88% of
all issues)

88% in four subsystems (89% of
all issues)

RQ2

Phase Introduced 91% in the Implementation Phase 85% in the Implementation Phase Data not available
Phase Found Followed closely the phase intro-

duced distribution
Followed closely the phase intro-
duced distribution

Most found during Code Imple-
mentation, Build Integration, and
Build Verification

RQ3

Severity Level 3 dominated (86%) Levels 3 and 4 dominated (79%) Moderate dominated (86%) RQ4

Five (out of 21)
most frequent pri-
mary Classes

Exception Management 10.8%
Memory Access 54.6%
Other 1.5%
Risky Values 8.5%
Unused Entities 14.6%
Total 90%

Exception Management 8.2%
Memory Access 18.3%
Other 24.5%
Risky Values 21.8%
Unused Entities 14.5%
Total 87%

Exception Management 27.2%
Memory Access 12.8%
Other 7.1%
Risky Values 28.3%
Unused Entities 3.8%
Total 79%

RQ5

corresponding secondary classes when they were related to

these classes and could not be placed into any other class.)

The primary class Risky Values consisted of the secondary

class Glitch in Computation, which deals with calculation

errors such as divide by zero error or a function call with

an incorrect order of arguments.

The primary class Unused Entities consisted predomi-

nately of the secondary class Dead Code and much less of

the secondary class Unused Variable.

Table V summarizes the main findings as they pertain to

RQ1 - RQ5 and helps identifying trends that are consistent

across datasets (i.e., RQ6).

Interestingly, the Code related security issues dominated

both the Ground mission IV&V security issues and the

Flight mission IV&V security issues, with 95% and 92%,

respectively. We believe that this is an important finding,

especially having in mind that software bugs (including

the security related bugs) were discovered using different

methods, throughout the life cycle (e.g., see Figure 4). This

finding implies that enforcing secure coding practices and

verification and validation focused on coding errors (for

example by using a check list for inspection) would be cost

effective ways to improve missions’ security.

The location of security issues, as the location of total

issues, followed the Pareto principle. Specifically, from 86%

to 88% of security issues were located in two to four sub-

systems, for all three datasets. This result is consistent with

the related works focused on characterization of software

bugs in general (e.g., [6], [7], [9]).

In both the Ground mission and Flight mission IV&V

issues datasets majority of issues (i.e., 91% and 85%, respec-

tively) were introduced in the Implementation phase. This is

consistent with the fact that majority of security issues were

code related. It is important that software vulnerabilities (i.e.,

security issues) are fixed in a timely manner. The good

news is that in most cases the phase in which the issues

were found was the same as the phase in which they were

introduced. The most security related issues of the Flight

mission Developers issues dataset were found during Code

Implementation, Build Integration, and Build Verification,

which is consistent with the other datasets.

With respect to severity, the results showed that the

security issues, as the majority of all issues, were with

moderate severity, for all three datasets.

The final row in Table V lists the five dominant primary

classes (out of 21 classes), which together contributed from

around 80% to 90% of all security issues in each dataset.

This again proves the Pareto principle of uneven distribution

of security issues across CWE classes and supports the fact

that addressing these dominant security classes provides the

most cost efficient way to improve missions’ security. Note

that faulty Memory Access was among prevalent types of

vulnerabilities in [32], [33], and a significant percentage of

Exception Management vulnerabilities were reported in [32].

Furthermore, the related works which explored software

vulnerabilities in web applications [34], [35] also found

skewed distributions across vulnerability classes. However,

since these two works were focused on a different domain

(i.e., web applications) and analyzed only XSS and SQL

injections, detailed comparison of vulnerability classes with

our work is not feasible. In general, comparing dominant

vulnerability classes across related works is a challenging

task because different works used different classification

schemas.

VII. THREATS TO VALIDITY

In this section we discuss the threats to validity to our

study. Construct validity is concerned with whether we

are measuring what we intend to measure. The number and

classes of identified security issues depend on the quality

of software artifacts, as well as the level of provided details

related to security. In the case of the Ground mission IV&V

dataset, significant number of security issues were tagged

as testing related. Since no CWE exists that covers such

cases and testing issues are not related to software itself,

these testing related security issues were not included in

the further analysis. Another threat to construct validity

is related to the fact that some security issues could be

correctly classified into multiple CWE classes. However,

161

the number of issues fitting into multiple CWE classes was

small, and for these cases the most relevant of the possible

classes was selected.

Internal validity threats are concerned with unknown

influences that may affect the independent variables. Data

quality is one of the major concerns to the internal validity.

It should be noted that NASA issue tracking systems follow

high record keeping standards, which provides some guaran-

tee for the quality and consistency of the data. As mentioned

in section IV, in the case of the Flight mission datasets (both

the IV&V issue and Developers issues) software issues were

not tagged as security related and security aspects of soft-

ware bugs were not explicitly addressed in the descriptions.

Therefore, it is possible that some potential security aspects

were not reflected in the available information and, therefore,

could not be accounted for in our analysis.

Conclusion validity threats impact the ability to draw

correct conclusions. One threat to conclusion validity is

related to data sample sizes. The work presented in this paper

is based on three dataset, with a total of 2,735 issues, out of

which 664 were classified as security related. The numbers

of security issues per dataset were also large, ranging from

133 to 374. The results and conclusions may be affected by

the fact that the types of security issues (and consequently

the identified primary and secondary classes) may depend

on the validation and verification (V&V) methods used,

as well as the amount of time and effort expended on

using these methods. The analysis methods in our case were

explicitly available for only one of the datasets. However,

we confirmed with the NASA personnel that the V&V and

IV&V activities for the three datasets spanned the whole

software lifecycle and were focused on different software

artifacts, including requirements, design, and code.

External validity is concerned with the ability to gener-

alize results. The breadth of this study, including the facts

that (1) it is based on two large NASA missions containing

around one million lines of code each and (2) the missions

were developed by different teams over multiple years,

allow for some degree of external validation. Nevertheless,

we cannot claim that the results would be valid for other

mission critical software systems. Furthermore, one can

expect different application domains to have different sets

of dominant vulnerability classes. Therefore, the external

validity remains to be established by similar future studies

that will use other software products as case studies.

VIII. CONCLUSION

While prior empirical work on characteristics of software

faults (i.e., bugs) and failures exists, much less research

works were focused on analyses of software application

vulnerabilities. This paper contributes towards building an

evidence-based knowledge about different aspects of soft-

ware application vulnerabilities. The empirical findings pre-

sented in the paper are based on the data extracted from the

issue tracking systems of two NASA missions. It should

be noted that this study accounts for vulnerabilities that

may have been introduced, found, and fixed throughout

the software lifecycle. Using the extracted data, organized

in three datasets, we built so called security vulnerability

profiles that address several aspects of software application

vulnerabilities, such as where and when the security vul-

nerabilities were introduced and what were the dominant

vulnerabilities classes. An important aspect of this paper is

the identification of trends that are consistent across the three

datasets.

The main findings of this work indicate that the majority

of vulnerabilities were code related and were introduced in

the Implementation phase, and that the Pareto principle (i.e.,

uneven distributions) applied both to the location of vul-

nerabilities across subsystems and to the distribution across

different vulnerability classes. It appears that development

and testing efforts focused on these vulnerability prone

subsystems and dominant vulnerability classes provide the

most cost efficient ways to improve missions’ security.

We believe that mining the information related to software

vulnerabilities supports building a knowledge base that could

be useful for other similar systems. Exploring the same

research questions on other case studies (from the space and

other domains) would help establishing the characteristics of

software application vulnerabilities that are invariant across

different software systems and/or application domains.

ACKNOWLEDGMENTS

This work was funded in part by the NASA Software

Assurance Research Program (SARP) in 2016 fiscal year.

Any opinions, findings, and recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the funding agency. The authors thank

the following NASA personnel for their support: Brandon

Bailey, Craig Burget, and Dan Painter.

REFERENCES

[1] “NASA cybersecuirty presentation,” NASA Office of the
Chief Information Officer, Nov 2014.

[2] K. Osborn, “Air force faces increasing space threats: Shelton,”
in DefenseTech, Sep 2013.

[3] “Inadequate security practices expose key NASA network to
cyber attack,” Office of Inspector General, Audit report, May
2011.

[4] N. Mansourov, “Software fault patterns (SFP),” 2011, [online]
https://samate.nist.gov/BF/Enlightenment/SFP.html.

[5] “CWE-888: Software fault pattern (SFP) clusters, MITRE
Corporation,” https://cwe.mitre.org/data/graphs/888.html.

[6] N. E. Fenton and N. Ohlsson, “Quantitative analysis of
faults and failures in a complex software system,” IEEE
Transactions on Software Engineering, vol. 26, no. 8, pp.
797–814, Aug 2000.

[7] M. Hamill and K. Goseva-Popstojanova, “Common trends
in software fault and failure data,” IEEE Transactions on
Software Engineering, vol. 35, no. 4, pp. 484–496, July 2009.

162

[8] ——, “Exploring the missing link: An empirical study of
software fixes,” Software Testing, Verification and Reliability,
vol. 24, no. 8, pp. 684–705, 2014.

[9] ——, “Exploring fault types, detection activities, and failure
severity in an evolving safety-critical software system,” Soft-
ware Quality Journal, vol. 23, no. 2, pp. 229–265, 2015.

[10] ——, “Analyzing and predicting effort associated with finding
and fixing software faults,” Information and Software Tech-
nology, vol. 87, pp. 1–18, 2017.

[11] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical
investigation of fault types in space mission system software,”
in 40th IEEE/IFIP International Conference on Dependable
Systems Networks (DSN), June 2010, pp. 447–456.

[12] J. Alonso, M. Grottke, A. P. Nikora, and K. S. Trivedi, “An
empirical investigation of fault repairs and mitigations in
space mission system software,” in 43rd IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), June 2013, pp. 1–8.

[13] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and
K. S. Trivedi, “Fault triggers in open-source software: An
experience report,” in 24th IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2013, pp. 178–187.

[14] J. A. Duraes and H. S. Madeira, “Emulation of software
faults: A field data study and a practical approach,” IEEE
Transactions of Software Engineering, vol. 32, no. 11, pp.
849–867, Nov. 2006.

[15] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal Defect
Classification – A concept for in-process measurements,”
IEEE Transactions on Software Engineering, vol. 18, no. 11,
pp. 943–956, Nov. 1992.

[16] X. Xia, X. Zhou, D. Lo, and X. Zhao, “An empirical study
of bugs in software build systems,” in 13th International
Conference on Quality Software, July 2013, pp. 200–203.

[17] I. Gashi, P. Popov, and L. Strigini, “Fault tolerance via di-
versity for off-the-shelf products: A study with SQL database
servers,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 4, no. 4, pp. 280–294, 2007.

[18] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characteriz-
ing failures in mobile OSes: A case study with Android and
Symbian,” in 21st IEEE International Symposium on Software
Reliability Engineering, Nov 2010, pp. 249–258.

[19] F. S. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript
errors in the wild: An empirical study,” in 22nd IEEE In-
ternational Symposium on Software Reliability Engineering
(ISSRE), 2011, pp. 100–109.

[20] F. S. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah,
“An empirical study of client-side JavaScript bugs,” in ACM
/ IEEE International Symposium on Empirical Software En-
gineering and Measurement, 2013, pp. 55–64.

[21] F. Frattini, R. Ghosh, M. Cinque, A. Rindos, and K. S.
Trivedi, “Analysis of bugs in Apache Virtual Computing
Lab,” in 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), June 2013, pp.
1–6.

[22] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico,
J. Fullop, and J. Kramer, “Lessons learned from the analysis
of system failures at petascale: The case of Blue Waters,”
in 44th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2014, pp. 610–621.

[23] A. Austin, C. Holmgreen, and L. Williams, “A comparison
of the efficiency and effectiveness of vulnerability discovery

techniques,” Information and Software Technology, vol. 55,
no. 7, pp. 1279–1288, 2013.

[24] J. Fonseca, M. Vieira, and H. Madeira, “Testing and compar-
ing web vulnerability scanning tools for SQL injection and
XSS attacks,” in 13th Pacific Rim International Symposium
on Dependable Computing (PRDC), 2007, pp. 365–372.

[25] N. Antunes and M. Vieira, “Comparing the effectiveness of
penetration testing and static code analysis on the detection
of SQL injection vulnerabilities in web services,” in 15th
IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), 2009, pp. 301–306.

[26] N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira,
“Effective detection of SQL/XPath injection vulnerabilities in
web services,” in IEEE International Conference on Services
Computing, 2009, pp. 260–267.

[27] M. Vieira, N. Antunes, and H. Madeira, “Using web security
scanners to detect vulnerabilities in web services,” in 39th
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2009, pp. 566–571.

[28] H. Shahriar, K. Weldemariam, M. Zulkernine, and T. Lutellier,
“Effective detection of vulnerable and malicious browser
extensions,” Computer & Security, vol. 47, pp. 66–84, 2014.

[29] O. Alhazmi, Y. Malaiya, and I. Ray, “Measuring, analyzing
and predicting security vulnerabilities in software systems,”
Computers & Security, vol. 26, no. 3, pp. 219 – 228, 2007.

[30] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro,
“Analysis of operating system diversity for intrusion toler-
ance,” Software – Practice and Experience, vol. 44, no. 6,
pp. 735–770, 2014.

[31] “Common Vulnerabilities and Exposures (CVE),” January
2017, https://cwe.mitre.org/.

[32] S. Chen, Z. Kalbarczyk, J. Xu, and R. Iyer, “A data-driven
finite state machine model for analyzing security vulnera-
bilities,” in IEEE International Conference on Dependable
Systems and Networks, 2003, pp. 605–614.

[33] S. Chen, J. Xu, Z. Kalbarczyk, and R. Iyer, “Security vulner-
abilities: From analysis to detection and masking techniques,”
Proceedings of the IEEE, vol. 94, no. 2, pp. 407–418, 2006.

[34] J. Fonseca and M. Vieira, “Mapping software faults with
web security vulnerabilities,” in 38th IEEE International
Conference on Dependable Systems and Networks (DSN),
2008, pp. 257–266.

[35] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira, “Analysis of
field data on web security vulnerabilities,” IEEE Transactions
on Dependable and Secure Computing, vol. 11, no. 2, pp. 89–
100, 2014.

[36] “Common Weakness Enumeration (CWE),” January 2017,
https://cwe.mitre.org/.

[37] “CWE-1000: Research concepts, MITRE Corporation,”
https://cwe.mitre.org/data/graphs/1000.html.

[38] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious
kingdoms: A taxonomy of software security errors,” IEEE
Security Privacy, vol. 3, no. 6, pp. 81–84, Nov 2005.

[39] “CWE-700: Seven pernicious kingdoms, MITRE Corpora-
tion,” https://cwe.mitre.org/data/definitions/700.html.

[40] “CWE-699: Development concepts, MITRE Corporation,”
https://cwe.mitre.org/data/graphs/699.html.

[41] K. Goseva-Popstojanova and A. Perhinschi, “On the capabil-
ity of static code analysis to detect security vulnerabilities,”
Information and Software Technology, vol. 68, no. C, pp. 18–
33, Dec. 2015.

163

