
Identification of Security related Bug Reports via Text Mining using Supervised and
Unsupervised Classification

Katerina Goseva-Popstojanova and Jacob Tyo

Lane Department of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV, USA

Email: Katerina.Goseva@mail.wvu.edu

Abstract—While many prior works used text mining for
automating different tasks related to software bug reports, few
works considered the security aspects. This paper is focused on
automated classification of software bug reports to security and
not-security related, using both supervised and unsupervised
approaches. For both approaches, three types of feature vectors
are used. For supervised learning, we experiment with multiple
classifiers and training sets with different sizes. Furthermore,
we propose a novel unsupervised approach based on anomaly
detection. The evaluation is based on three NASA datasets.
The results showed that supervised classification is affected
more by the learning algorithms than by feature vectors and
training only on 25% of the data provides as good results
as training on 90% of the data. The supervised learning
slightly outperforms the unsupervised learning, at the expense
of labeling the training set. In general, datasets with more
security information lead to better performance.

Keywords-software vulnerability; security bug reports; clas-
sification; supervised learning; unsupervised learning; anomaly
detection.

I. INTRODUCTION

Issue tracking systems are used by software projects to

record and follow the progress of every issue that developers,

testing personnel and/or software system users identify.

Issues may belong to multiple categories, such as software

bugs, improvements, and new functionality. In this paper,

we are focused on software bugs reports (as a subset of

software issues) with a goal to automatically identify those

software bugs reports that are security related, that is, are

related to security vulnerabilities that could be exploited

by attackers to compromise any aspect of cybersecurity

(i.e., confidentiality, integrity, availability, authentication,

authorization, and non-repudiation).

As the numbers of software vulnerabilities and cybersecu-

rity threats increase, it is becoming more difficult to classify

bug reports manually. In addition to the high level of human

effort needed, manual classification requires bug reporters

to have security domain knowledge, which is not always

the case. Therefore, there is a strong need for effective

automated approaches that would reduce the amount of

human effort and expertise required for identification of

security related bug reports in large issue tracking systems.

Software bug reports contain title, description and other

textual fields, and therefore text mining can be used for

automating different tasks related to software bug reports.

For example, text mining of software bug reports have

been used in the past to identify duplicates [1], classify

the severity levels [2], assign bugs to the most suitable

development team [3], classify different types of bugs (i.e.,

standard, function, GUI, and logic) [4], and topic modeling

to extract trends in testing and operational failures [5]. Only

several related works were focused on using text-based pre-

diction models to automatically classify software bug reports

to security related and non-security related [6], [7], and

[8]. Prediction models used in these works were based on

supervised machine learning algorithms that require labeled

bug reports for training. Each of these works used only

one type of feature vector and ten fold cross validation for

prediction; none experimented with the size of the training

set and its effect on the classification performance.

In this paper we propose both a supervised approach

and unsupervised approach that can be used by security

engineers to quickly and accurately identify security bug re-

ports. Specifically, for both approaches we use three types of

feature vectors: Binary Bag-of-Words Frequency (BF), Term

Frequency (TF), and Term Frequency-Inverse Document

Frequency (TF-IDF). For the supervised approach, we ex-

periment with multiple algorithms (i.e., Bayesian Network,

k-Nearest Neighbor, Naive Bayes, Naive Bayes Multinomial,

Random Forest, and Support Vector Machine), each in

combination with the three types of feature vectors. Unlike

the related works [6],[7], and [8], we use training sets with

different sizes to determine the smallest size of the training

set that produces good classification results. This aspect of

our work has a practical value because the manual labeling

of the bug reports in the training set is a tedious and time

consuming process. Furthermore, we propose, for the first

time, an unsupervised approach for identification of security

bug reports. This novel approach is based on the concept

of anomaly detection and does not require a labeled training

set. Specifically, we approached the classification problem as

one-class classification, and classified bug reports similar to

the descriptions of vulnerability classes from the Common

Weakness and Enumeration (CWE) view CWE-888 [9], [10]

as security related.

We evaluate the proposed supervised and unsupervised

approaches on data extracted from the issue tracking systems

of two NASA missions. These data were organized in

three datasets: Ground mission IV&V issues, Flight mission

IV&V issues, and Flight mission Developers issues. We used

these three datasets in our previous work [11] to study the

344

2018 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-7757-5/18/$31.00 ©2018 IEEE
DOI 10.1109/QRS.2018.00047

profiles of the security related bugs reports based on the

manual classification of each bug report to one of the twenty

one primary vulnerability classes from CWE-888 [10]. In

this paper we use the manual classification from our previous

work [11] as labels for the training sets in the case of

supervised learning and as ground truth for evaluation of

both the supervised and unsupervised learning approaches.

Specifically, we address the following research questions:

RQ1: Can supervised machine learning algorithms be used to

successfully classify software bug reports as security

related or non-security related?

RQ1a: Do some feature vectors lead to better classifica-

tion performance than other?

RQ1b: Do some learning algorithms perform consistently

better than other?

RQ1c: How much data must be set aside for training in

order to produce good classification results?

RQ2: Can unsupervised machine learning be used to classify

software issues as security related or non-security re-

lated?

RQ3: How does the performance of supervised and unsu-

pervised machine learning algorithms compare when

classifying software bug reports?

The main findings of our work include:

• Multiple learning systems, consisting of different com-

binations of feature vectors and supervised learning

algorithms, performed well. The level of performance,

however, does depend on the dataset.

– Feature vectors do not affect significantly the clas-

sification performance.

– Some learning algorithms performed better than

others, but the best performing algorithm was

different depending not only on the feature vector,

but also on the dataset. In general, the Naive Bayes

algorithm performed consistently well, among or

close to the best performing algorithms across all

feature vectors and datasets.

– The supervised classification was just as good with

only 25% of the data used for training as with

using 90% for training (i.e., the standard 10-fold

cross validation).

• Unsupervised learning based on anomaly detection can

be used for bug report classification.

• The best unsupervised classification results were not

as good as the best supervised classification results.

It appears that the choice of the learning approach is

a tradeoff between better performance at expense of

initial effort invested in labeling at least a quarter of

the data.

The rest of the paper is organized as follows. The related

work is presented in section II. In section III we present the

details of our data mining approaches, including the data

extraction and preprocessing, feature vectors we used, the

proposed supervised and unsupervised learning approaches,

and the metrics used for evaluation of the performance. The

datasets and the manual labeling process used as ground

truth for evaluation of the learning performance are de-

scribed in section IV. The results of the supervised and

unsupervised learning and their comparison are detailed in

section V, followed by the description of the threats to

validity in section VI. The paper is concluded in section VII.

II. RELATED WORK

Issue tracking systems contain unstructured text, and

therefore text mining can be used to automatically process

data from such systems. Multiple papers applied text mining

approaches on bug reports, and were focused on different

aspects such as identification of duplicates [1], classification

of severity level [2], assignment of bugs to the most suitable

development team [3], classification of issues to bugs and

other activities [12], [13], classification to different types

of bugs (i.e., standard, function, GUI, and logic) [4], and

topic modeling to extract trends in testing and operational

failures [5]. None of these works considered security aspects

of software bugs.

Several works treated the source code as textual document

and used text mining to classify the software units (e.g.,

files or components) as vulnerable [14], [15]. Hovsepyan

et al. extracted feature vectors that contained the term

frequencies (TF) from the source code and used SVM to

classify which files contain vulnerabilities [14]. The dataset

used in that work was the source code of the K9 mail client

for Android mobile device applications. The static code

analysis tool Fortify [16] was used to label the source code

vulnerabilities and the following classification performance

metrics were reported: recall of 88%, precision of 85%,

and accuracy of 87%. Note that these performance metrics

were not with respect to the true class, but were based on

comparison with the labels assigned by Fortify. However, it

is known that static code analysis tools do not detect 100%

of vulnerabilities and have a very high false positive rate

[17]. In some sense, these results indicate that the method

proposed in [14] performed similarly to Fortify. In another

work, Scandariato et al. tried to identify components that

are likely to contain vulnerabilities using term frequencies

extracted from the source code along with Naive Bayes or

Random Forest learners [15]. Using a dataset of twenty

Android application, the prediction models led to recall

between 48% and 100% and precision between 62% and

100%.

Somewhat related work by Perl et al. was focused on

identification of Vulnerability Contributing Commits (VCC)

within a version control system [18]. For this purpose, they

mapped the CVEs and the commits leading to them, creating

a vulnerable commit database. Based on that database, an

SVM classifier was used to flag suspicious commits. This

work used a dataset of 66 projects that used either C or C++

345

programming language. The authors stated that, compared

to Flawfinder [19], their method cut the number of false

positives in half, while maintaining a recall between 26%

and 48% and precision between 11% and 56%.

Several papers were focused on some security aspects

of software bugs [20], [21], [22]. Wang et al. proposed

a methodology for classification of vulnerabilities accord-

ingly to their security types using Bayesian Networks [20].

The security types were defined as a subset of the NVD

classification schema, and each vulnerability was classified

as one of these types based on its CVSS Access Vector,

Access Complexity, Authentication, Confidentiality Impact,

Integrity Impact, and Availability Impact [23]. The prob-

ability distribution of vulnerabilities was calculated from

all vulnerabilities in the NVD related to Firefox, but no

performance metrics were reported.

Gegick et al. used text mining on the descriptions of bug

reports to train a statistical model on manually-labeled bug

reports to identify security bug reports that were mislabeled

as non-security bug reports [21]. The SAS text mining tool

was used for the feature vector creation, as well as prediction

in a form of singular value decomposition (SVD). The bug

reports from four large Cisco projects were used as datasets.

The text mining model identified 77% of the security bug

reports which were manually mislabeled as non-security bug

reports by bug reporters. This system, however, had a very

high false positive rate, varying from 27% to 96%. In a

similar work, Wright et al. conducted an experiment to

estimate the number of misclassified bugs yet to be identified

as vulnerabilities in the MySQL bug report database [22]. To

determine which issues were misclassified, a scoring system

was developed. The experiment was initially performed on a

subset of issues from the MySQL bug database, and after the

scoring, the results were extrapolated into the entire dataset.

The closest to our work are three papers focused on

classification of software bugs to security and non-security

related [6], [7], and [8]. Often times, bugs are only identified

as vulnerabilities long after the bug has been made public

[6]. Wijayasekara et al. denoted such bugs as Hidden Impact

Bugs (HIBs) and, based on their previous work [24], created

a system that can identify such bugs [6]. The authors

first identified the CVEs for the Linux kernel and then

gathered the corresponding bug reports. A basic “bag of

words” approach in combination with Naive Bayes, Naive

Bayes Multinomial, and Decision Tree classifiers were used,

resulting in recall of 2%, 9%, and 40% and precision of 88%,

78%, and 28%, respectively.

Another related work by Behl et al. used the Term

Frequency-Inverse Document Frequency (TF-IDF) along

with an undefined “vector space model,” and compared the

performance of this approach to an approach using the Naive

Bayes algorithm [7]. The reported accuracy and precision

(96% and 93%, respectively) were only marginally better

than for the Naive Bayes. It should be noted, however,

that neither accuracy nor precision, which were the only

metrics reported in [7], represent well the ability to clas-

sify bugs as security or non-security related. Specifically,

both performance metrics can give misleading results for

imbalanced datasets, which are expected in this situation.

For cases like this, the recall and false alarm rate are much

more appropriate performance metrics than accuracy and

precision.

A recent work by Peters et al. proposed a framework

called FARSEC, which integrated filtering and ranking for

security bug report prediction [8]. Before building prediction

models FARSEC identified and removed non-security bug

reports with security related keywords. This filtering step

was aimed at decreasing the false positive predictions. For

prediction models FARSEC used the TF-IDF in combination

with five machine learning algorithms: Random Forest,

Naive Bayes, Logistic Regression, Multilayer Perceptron,

and k-Nearest Neighbor. Finally, the results of the prediction

models were used to create ranked lists of bug reports, with

an expectation that security bug reports would be closer to

the top of the ranked lists than to the bottom. FARSEC

was evaluated on bug reports from Chromium and four

Apache projects. The combinations of a filter and learner

that produced the best G-Score had recall values in the range

from 47.6% to 66.7%, probability of false alarm from 3.0%

to 41.8%, and G-Score between 53.8% and 71.9% across

the five datasets.

Common to the related works [6], [7], and [8] are the facts

that (1) they all use prediction models based on supervised

machine learning algorithms that require labeled bug reports

for training, (2) each work used only one type of feature

vector (i.e., BF was used in [6] and TF-IDF in [7] and

[8]), and (3) none of these works experimented with the

size of the training set with a goal to find the smallest

training set that produces good prediction results. It appears

that unsupervised machine learning has not been used for

classification of bug reports to security related and non-

security related in any prior related works.

III. PROPOSED DATA MINING APPROACHES

The overview of the proposed data mining approaches is

presented in Figure 1.

A. Data Extraction and Preprocessing

We approached the classification of bug reports as a

text mining problem. First, the “Title”, “Subject”, and

“Description” of each bug report were extracted, and then

concatenated into a single string. The preprocessing steps

included removing all non-alphanumeric characters using a

regular expression in Python, converting all characters to

lowercase, removing stop words1 using python’s Natural

1Stop words are words that do not contain important information for the
classification. Examples of stop words include: “a”, “and”, “but”, “how”,
“or”, and “what.”

346

Figure 1. Overview of the proposed data mining approaches

Language Toolkit (NLTK) English stop word list [25], and

then stemming2 each word with Python’s Lovins stemming

algorithm implementation [26].

After the preprocessing steps were completed, we had one

string for each bug report in the dataset. The features to be

used for the data mining were then extracted from these

strings as described next.

B. Feature Vectors

The traditional terminology used in text mining includes:

terms, documents, and corpus. A term is a word within

a document, that is, in our case a word in the string

representation of a bug report. A document is a collection

of terms, that is, in our case the string representing a bug

report. A corpus is a collection of documents, that is, in our

case the collection of strings representing all bug reports

from a specific dataset. It follows that in this work there

are three corpora, one for each dataset, which are denoted

in the same manor as the datasets they originated from:

Ground Mission IV&V Issues, Flight Mission IV&V Issues,

and Flight Mission Developers Issues.

To conduct automated classification, it is necessary to

extract feature vectors for each document. Each location in

the feature vector represents a term, and the numeric value

at that location measures the occurrence of that term in the

document. The collection of terms (i.e., words) represented

in feature vectors are referred to as the vocabulary. Select-

ing a large vocabulary would improve the coverage, and

therefore the amount of analyzed terms extracted from each

document; however, this leads to a very large dimensionality,

increasing complexity, and could result in unnecessary noise.

In our case, it appeared that most of the textual descriptions

in bug reports were focused on how the bugs were found,

their manifestation, and how they were fixed. Consequently,

the security aspects were often a small detail within the bug

report, or were not present at all. Because of this, using a

2Stemming is the process of reducing inflected (or sometimes derived)
words to their word stem, base or root form.

vocabulary that consist of every term in the corpus, which

is a typical approach, was not suitable. In particular, out

of around two million terms in the vocabulary, only a few

terms were related to the security aspect and the rest was

a noise from the perspective of automated classification.

Therefore, we used a smaller vocabulary extracted from the

CWE-888 view, which minimized the amount of noise in

feature vectors.

In this paper we used three types of feature vectors: Binary

Bag-of-Words Frequency (BF), Term Frequency (TF), and

Term Frequency-Inverse Document Frequency (TF-IDF).

The Binary Bag-of-Words Frequency (BF) is the most

simplistic feature vector, defined by equation (1):

BF (term) =

{
0, if f(term) = 0
1, if f(term) > 0

(1)

where BF (term) is the binary bag-of-words frequency of a

term and f (term) represents the frequency (i.e., number of

occurrences) of the term in the document. In other words,

BF method only determines if each term in the vocabulary

is in the document or not.

The Term Frequency (TF) feature extraction method re-

tains more information about the terms in a document than

the BF. As shown in equation (2), instead of 1s and 0s

corresponding to the presence or absence of a term, TF

records the frequency (or number of occurrences) of a term

in the document:

TF (term) = f(term). (2)

The Term Frequency-Inverse Document Frequency (TF-

IDF) feature vector, defined by the equation (3), is an exten-

sion of the TF feature extraction method, that weights the

importance of a term in a specific document inversely to how

often it appears in other documents. This is done to decrease

the effect of terms that appear in many documents, because

such terms likely contain little discriminatory information.

TF-IDF(term) = f(term) · log n

N(term)
(3)

where n is the total number of documents, and N(term) is

the number of documents that the specific term appears in.

A common variation to these feature vectors is to exclude

any terms that do not appear a minimum number of times

in a document. This minimum frequency is often used to

reduce the noise in a dataset. However, our work is focused

on bug reports which often include only one word (i.e., term)

pertaining to the security aspects of the bug. Therefore, to

avoid loosing important information, no minimum frequency

was set.

C. Proposed supervised classification

A supervised learning uses labeled training data to infer a

model that describes the output from the input data. In this

work we used the following supervised learning algorithms:

347

Bayesian Network (BN), k-Nearest Neighbor (kNN), Naive

Bayes (NB), Naive Bayes Multinomial (NBM), Random

Forest (RF), and Support Vector Machine (SVM).

Here we define a (machine) learning system as a combi-

nation of a type of feature vector (described in Section III-B)

and a supervised classifier (from the list given above). Each

learning system is denoted as FeatureVector Classifier. For

example, if the Term Frequency (TF) feature vector was used

in combination with the Naive Bayes Multinomial (NBM)

classifier, this learning system is denoted as TF NBM.

To conduct supervised learning, each corpus has to be

separated into two non-overlapping sets: training and testing.

To achieve this, we first used the typical data mining

approach based on 10-fold cross validation. This means the

given dataset was split into ten equal folds (i.e., subsets),

and then the training was performed on nine of them, and

the testing was performed on the remaining tenth fold. This

was repeated ten times, with each fold used exactly once for

testing, and the average values of the performance metrics

are reported.

Next, we explored the smallest amount of data that must

be set aside for training in order to produce good classifica-

tion results. This research question was motivated by the fact

that the standard 10-fold cross validation learning approach

has limited practical value because it reflects the situation

in which a human has completed the manual labeling of

90% of the data before attempting to do predictive classifi-

cation. Therefore, we conducted experiments exploring the

feasibility of classifying the bug reports on smaller subsets

of labeled data. For each of the datasets, we tested if the

learning systems can correctly classify the bug reports to

security and non-security related when using 90%, 75%,

50%, and 25% subsets for training, and the remaining part

for testing. The experiments for 90%, 75%, and 50% were

performed using cross validation (that is, 10-fold, 4-fold, and

2-fold, respectively) and the results were averaged. For the

25% experiment, since a cross validation approach would

not work, the experiments were performed using random

stratified selection with four repetitions. The results from

the four experiments were then averaged.

D. Proposed unsupervised classification

Unsupervised learning infers a function to describe hidden

structure in the data from unlabeled data. The use of unsu-

pervised learning approach was motivated by two drawbacks

of supervised learning. First, supervised learning algorithms

require manual labeling of data to be used for training (i.e.,

building the model), which then can be used for testing (i.e.,

classification) of the unseen data points. The manual labeling

may require significant time and effort. Second, there is a

very high likelihood that not all vulnerability types will have

significant numbers or even be present in the training set.

Obviously, if a type of vulnerability is never presented to a

classifier during the training, it is unlikely that the classifier

will correctly classify data points in the testing set belonging

to that vulnerability type.

In order to avoid the time consuming and costly manual

labeling as well as guarantee that all vulnerability types have

been properly defined and presented to the classifier, we

propose a novel unsupervised machine learning approach

based on anomaly detection. Anomaly detection refers to

the problem of finding patterns in data that deviate from

‘normal’ [27]. In our case the CWEs descriptions given

in the CWE-888 view are considered ‘normal’ and the

unsupervised machine learning method (for the purpose of

classification) identifies the deviation from ‘normal’ and

classifies those documents (i.e.. bug reports) as non-security

related. In other words, we set the classification problem

as one-class classification. Basically, the feature vector A
extracted from CWE-888 descriptions defines the ‘normal’

behavior (in our case security related bugs). We use the

cosine similarity distance measure defined by equation (4)

to determine if the feature vector B of a document (i.e.,

bug report) is similar to the ‘normal’ (i.e., security related

bugs as defined by the CWE descriptions) or not. The cosine

similarity simply measures the distance (angle) between the

feature vectors of two documents, and if the distance is

greater than a threshold then the bug report is classified

as non-security related (i.e., deviates from the ‘normal’).

Otherwise, it is deemed to be similar to CWE descriptions

and is classified as security related bug report.

similarity(A,B) =
A · B

‖A‖ · ‖B‖ =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(4)

Instead of guesstimating the value of the threshold, we

adopted the method for threshold selection proposed in [28],

which is based on testing a wide range of thresholds on the

validation data, selecting the threshold which gives the best

performance, and using it for measuring the similarity on

the testing data. For this purpose, each corpus (i.e., dataset)

was separated into two subsets, where one subset was used

as the validation set and the other as the testing set. (The

threshold selection was based on the G-Score metric defined

by equation (10) in section III-E.)

E. Performance Evaluation

The metrics used for performance evaluation are derived

from the confusion matrix shown in Table I. The true (i.e.,

actual) class for this work is security related bug reports.

We compute the following metrics which assess different

aspects of the classification:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall =
TP

TP + FN
(6)

PFA =
FP

TN + FP
(7)

348

Table I. CONFUSION MATRIX

Predicted class
Security bug report Non-security bug report

Actual class
Security bug report Count of True Positives (TP) Count of False Negatives (FN)

Non-security bug report Count of False Positives (FP) Count of True Negatives (TN)

Precision =
TP

TP + FP
(8)

The accuracy, given with (5), provides the percentage of

bug reports that are classified correctly with respect to all

bug reports. Accuracy has a limited value in cases when

the classes are imbalanced, i.e., when one of the classes is

much smaller than the other. Recall, defined by equation

(6), accounts for the probability of detecting a security

related bug report (i.e., is defined as the ratio of correctly

classified security related bug reports to all security related

bug reports). Probability of false alarm (PFA), defined by (7),

is the ratio of non-security related bug reports misclassified

as security related bug reports to all non-security related bug

reports. Precision, defined by (8), determines the fraction of

bug reports correctly classified as security related out of all

bug reports classified as security related. Accuracy, recall,

probability of false alarm, and precision values are in the

interval [0, 1]; a good classifier has high accuracy, recall,

and precision and a low probability of false alarm.

The F-Score is the harmonic mean between precision

and recall (see equation (9)), which describes how well

an automated system is able to balance the performance

between precision and recall. Ideally, we want both recall

and precision to be 1, which leads to F-Score equal to 1. If

either one is 0, F-Score is 0 by definition.

F -Score =
2 · Precision · Recall
Precision + Recall

(9)

The G-Score is the harmonic mean between Recall and

(1−PFA), as given by equation (10). High G-Score indicates

a good classifier, with high Recall and low PFA. The

ideal G-Score of 1 is obtained when the Recall = 1 and

PFA = 0. Note that G-Score accounts for the two most

important metrics in our work – the Recall and PFA – and

therefore it is used as a criterion to determine how good

different learning systems are, as well as for the selection

of the threshold used in the unsupervised learning (see

section III-D).

G-Score =
2 · Recall · (1− PFA)

Recall + (1− PFA)
(10)

IV. DESCRIPTION OF THE DATASETS AND THE MANUAL

LABELING APPROACH

The three datasets from NASA utilized in this work were

created by extracting relevant information from the IV&V

issues of a ground mission, and both IV&V issues and

developers’ issues of a flight mission. For all three datasets

only the “closed” bug reports from their corresponding issue

tracking systems were included.

The first dataset, referred to as Ground Mission IV&V
Issues in this paper, was extracted from the IV&V issue

tracking system of a NASA ground mission. The ground

mission software has 1.36 million source lines of code

and 1,779 bug reports were created in the issue tracking

system over four years. For this mission, the IV&V analysts

specifically considered the security aspects of the mission

and therefore the relevant bug report descriptions contained

some security related information. Out of the 1,779 bug

reports, the IV&V analysts explicitly marked 133 bug reports

as security related. (Note that the bug reports tagged as

security related testing issues were not included as they do

not deal with the actual software under investigation.)

The second dataset, referred to as Flight Mission IV&V
Issues in this paper, consists of the IV&V issues extracted

from the issue tracking system of a NASA flight mission.

The flight mission software has 924 thousand source lines

of code. Over four years, a total of 506 bug reports were

entered in the issue tracking system, out of which 383 bug

reports remained after the removal of bug reports marked as

“Withdrawn” or “Not an Issue”. Even though this dataset

was also created by IV&V analysts, security aspects of

bug reports were not explicitly considered and bug reports’

descriptions contained little security related information.

Instead, descriptions were mainly addressing aspects of

software operation.

The third dataset, which is referred to as Flight Mission
Developers Issues, consists of issues entered by software de-

velopers in the developers’ issue tracking system of the same

NASA flight mission as the Flight Mission IV&V Issues. In

this issue tracking system a total of 1,947 Developer Change

Requests (DCRs) were created over five and a half years,

out of which 573 DCRs were tagged as “Defects”. (The

remaining issues were marked either as “Change Requests”

or some other non bug related type, and therefore were not

included in the dataset used in this paper.) Since this dataset

was created by the developers (instead by IV&V analysts)

the textual descriptions were more focused on the software

operation than security aspects. As in case of the Flight

Mission IV&V Issues dataset, no bug reports were explicitly

marked as security related.

In order to be able to use supervised learning algorithms

and have a ground truth for evaluation of both suprevised

and unsupervised classification performance, we needed the

bug reports from all three datasets to be labeled as security

349

related or non-security related. As mentioned earlier, only

the bug reports from the Ground Mission IV&V Issues

dataset were explicitly marked as security or non-security

related. The bug reports of the two flight missing datasets

(i.e., IV&V issues and Developers issues) were manually

classified (i.e., labeled) by our research team [11]. Here we

only briefly describe our manual labeling approach. The

details are given in our previous work [11], which was

focused on studying the trends of the software vulnerabilities

in mission critical software.

The manual labeling (i.e., classification) of each software

bug was based on the information provided in the textual

fields of the issue tracking systems and was guided by the

definitions of the CWE-888 primary and secondary classes

[10]. Several examples of manual bug reports classification

are as follows. A bug report with following description

“. . . Line 277: Null pointer dereference of ‘getServiceSta-

tusInfo(...)’ where null is returned from a method,” was

classified as the CWE-888 primary class “Memory Access”

and “Faulty Pointer Use” secondary class. A bug report with

the description “. . . The stream is opened on line 603 of

file1. If an exception were to occur at any point before line

613 where it is closed, then the ‘try’ would exit and the

stream would not be closed,” was classified as the CWE-

888 primary class “Resource Management” and “Failure to

Release Resource” secondary class. On the other side, a

bug report with the description “. . . Table 1-11 lists XYZ

as a unidirectional interfaces, but Figure 1-4 shows this

connection as bidirectional,” was classified as non-security

related.

Note that, similarly to static code analysis tools, we used

a conservative labeling (i.e., classification) approach and

treated as security related every bug report to which we

could assign a CWE-888 class.

Using the above described manual labeling approach we

labeled as security related 157 bug reports (out of 383 bug

reports) in the Flight Mission IV&V Issues dataset and 374

bug reports (out of 573) in the Flight Mission Developers

Issues dataset. Table II summarizes the basic facts of the two

missions and the three datasets used for evaluation of the

data mining approaches for security bug reports prediction.

Table II. BASIC FACTS ABOUT THE THREE DATASETS

Total # Security
Mission Size closed bug bug Dataset

reports reports

Ground 1.36 MLOC 1,779 133 Ground mission IV&V

Flight 924 KLOC 383 157 Flight mission IV&V
573 374 Flight mission Developers

V. RESULTS

A. Results of supervised learning

In this section we present the result of the supervised ma-

chine learning approach described in section III-C. We start

with RQ1, which is focused on exploring if supervised ma-

chine learning can be used to successfully classify software

bug reports as security related or non-security related. In this

part, we use all combinations of feature vectors presented in

Section III-B and supervised classification algorithms listed

in Section III-C on each of the three datasets. For the kNN

algorithm, the values of k that produced the best results were

1, 3, and 20 for the Ground Mission IV&V Issues dataset,

Flight Mission IV&V Issues dataset, and Flight Mission

Developers Issues dataset, respectively. For SVM we used

the Radial Basis Function (RBF) kernel. The results are

given in Tables III, IV, and V. For each dataset, the column

corresponding to the classifier that performed the best with

respect to G-Score is given in bold.

Table III presents the classification performance for each

dataset when using Binary Bag-of-Words feature vector (BF)

in combination with each supervised classifier. Interestingly,

but not unexpectedly, the best performing classifier was

different for each dataset. Specifically, the best classifiers

for the Ground Mission IV&V Issues dataset, Flight Mission

IV&V Issues dataset, and Flight Mission Developers Issues

dataset were the Bayesian Network, Random Forest, and

Naive Bayes, respectively. Furthermore, some classifiers,

such as Naive Bayes, had consistently good performance

across all datasets. Other classifiers, such as Bayesian Net-

work, performed well on one dataset, but poorly on other

dataset(s), including G-Score of 0 on the Flight Mission

Developers Issues dataset.

Table IV presents the classification performance for each

dataset when using the Term Frequency (TF) feature extrac-

tion method in combination with each supervised classifier.

In this case, the Naive Bayes Multinomial (NBM) classifier

performed the best for the Ground Mission IV&V Issues

dataset, while the Support Vector Machine (SVM) classifier

was the best for both Flight Mission datasets. Consistently

with the use of BF feature vector (see Table III) some

classifiers performed consistently good across all datasets,

while the performance of other classifiers varied significantly

over different datasets, from very good to very poor.

Table V presents the classification performance for each

dataset when using the Term Frequency-Inverse Document

Frequency (TF-IDF) feature vector in combination with each

supervised classifier. In this case, the Bayesian Network

(BN) performed the best on the Ground Mission IV&V

Issues dataset, the Random Forest (RF) classifier performed

the best on the Flight Mission IV&V Issues dataset, and the

Naive Bayes (NB) classifier provided the best results on the

Flight Mission Developers Issues dataset. Some classifiers

performed consistently good across all datasets, while the

performance of other classifiers varied significantly over

different datasets, from very good to very poor.

To address RQ1, based on the results presented so far, it

appears that supervised learning can be used to successfully

classify software bug reports to security related and non-

security related. However, the results heavily depend on the

datasets. In particular, regardless of the learning system,

350

Table III. CLASSIFICATION PERFORMANCE OF BF FEATURE VECTOR AND SUPERVISED CLASSIFIERS. FOR EACH DATASET, THE COLUMN

CORRESPONDING TO THE CLASSIFIER WITH THE BEST G-SCORE IS SHOWN IN BOLD.

Ground
Mission
IV&V
Issues

Supervised System BF BN BF kNN BF NB BF NBM BF RF BF SVM
Accuracy 87.4% 94.6% 87.2% 88.7% 94.8% 94.3%
Precision 37.0% 65.4% 36.7% 39.4% 80.3% 70.7%

Recall 93.4% 62.5% 93.4% 89.7% 41.9% 42.6%
PFA 13.1% 2.7% 13.3% 11.4% 0.9% 1.5%

F-Score 53.0% 63.9% 52.7% 54.7% 55.1% 53.2%
G-Score 90.0% 76.1% 89.9% 89.1% 58.9% 59.5%

Flight
Mission
IV&V
Issues

Supervised System BF BN BF kNN BF NB BF NBM BF RF BF SVM
Accuracy 69.9% 76.2% 70.7% 80.1% 84.0% 81.4%
Precision 58.3% 70.4% 59.1% 70.6% 80.8% 79.1%

Recall 94.3% 72.6% 93.0% 88.5% 80.3% 74.5%
PFA 47.1% 21.3% 44.9% 25.8% 13.3% 13.8%

F-Score 67.4% 71.5% 72.3% 78.5% 80.5% 76.7%
G-Score 67.8% 75.5% 69.2% 80.7% 83.4% 79.9%

Flight
Mission

Developers
Issues

Supervised System BF BN BF kNN BF NB BF NBM BF RF BF SVM
Accuracy 65.8% 66.9% 66.9% 70.1% 69.5% 67.1%
Precision 65.8% 69.4% 77.7% 70.2% 69.9% 74.7%

Recall 100.0% 89.0% 69.8% 94.6% 94.4% 75.7%
PFA 100.0% 75.5% 38.6% 77.2% 78.3% 49.5%

F-Score 79.4% 78.0% 73.5% 80.6% 80.3% 75.2%
G-Score 0.0% 38.4% 65.3% 36.7% 35.3% 60.6%

Table IV. CLASSIFICATION PERFORMANCE OF TF FEATURE VECTOR AND SUPERVISED CLASSIFIERS. FOR EACH DATASET, THE COLUMN

CORRESPONDING TO THE CLASSIFIER WITH THE BEST G-SCORE IS SHOWN IN BOLD.

Ground
Mission
IV&V
Issues

Supervised System TF BN TF kNN TF NB TF NBM TF RF TF SVM
Accuracy 87.4% 93.5% 85.2% 87.9% 94.9% 94.1%
Precision 37.1% 57.3% 32.0% 38.0% 82.6% 66.0%

Recall 93.4% 60.3% 83.1% 93.4% 41.9% 47.1%
PFA 13.1% 3.7% 14.6% 12.6% 0.7% 2.0%

F-Score 53.1% 58.8% 46.2% 54.0% 55.6% 54.9%
G-Score 90.0% 74.2% 84.2% 90.3% 58.9% 63.6%

Flight
Mission
IV&V
Issues

Supervised System TF BN TF kNN TF NB TF NBM TF RF TF SVM
Accuracy 69.6% 70.9% 75.1% 78.3% 80.4% 83.8%
Precision 57.9% 60.3% 67.8% 67.8% 75.9% 78.8%

Recall 95.5% 86.0% 75.2% 89.8% 76.4% 82.8%
PFA 48.4% 39.6% 24.9% 29.8% 16.9% 15.6%

F-Score 72.1% 70.9% 71.3% 77.3% 76.2% 80.7%
G-Score 67.0% 71.0% 75.1% 78.8% 79.6% 83.6%

Flight
Mission

Developers
Issues

Supervised System TF BN TF kNN TF NB TF NBM TF RF TF SVM
Accuracy 65.8% 61.0% 66.9% 70.6% 70.4% 72.3%
Precision 65.8% 71.7% 75.0% 73.6% 71.0% 76.8%

Recall 100.0% 67.2% 74.6% 86.4% 93.2% 83.1%
PFA 100.0% 51.1% 47.8% 59.8% 73.4% 48.4%

F-Score 79.4% 69.4% 74.8% 79.5% 80.6% 79.8%
G-Score 0.0% 56.6% 61.4% 54.9% 41.4% 63.7%

the results with respect to G-Score and other performance

metrics were the best for the Ground Mission IV&V Issues

dataset, followed by the Flight Mission IV&V Issues dataset.

For these two datasets the classification was very successful.

The worst classification performance was for the Flight

Mission Developers Issues dataset. Note that the recall

values for the Flight Mission Developers Issues dataset were

also very good, but the high probability of false alarm

(PFA) led to much lower G-Score than for the other two

datasets. These results were somewhat expected having in

mind that, as described in Section IV, the textual fields of

the Ground Mission IV&V bug reports had more security

relevant information than the other two datsets; the Flight

Mission Developers’ bug reports had least security related

information.

After presenting the results for all combinations of feature

vectors and classifiers, we can address RQ1a and RQ1b,

which respectively are focused on exploring if some types

of feature vectors and supervised classifiers perform consis-

tently better than others. Based on the results presented in

Tables III, IV and V it can be concluded that:

• The type of feature vector did not affect the perfor-

mance of the learning systems significantly. BF and TF

performed similarly, while TF-IDF performed slightly

worse.

• Naive Bayes classifier performed consistently very well

across all datasets, even though it was not always the

best performing classifier. Other classifiers (i.e., SVM

and NBM) had fairly consistent performance, but not

always among the best and as good as Naive Bayes

351

Table V. CLASSIFICATION PERFORMANCE OF TF-IDF FEATURE VECTOR AND SUPERVISED CLASSIFIERS. FOR EACH DATASET, THE COLUMN

CORRESPONDING TO THE CLASSIFIER WITH THE BEST G-SCORE IS SHOWN IN BOLD.

Ground
Mission
IV&V
Issues

Supervised System TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM
Accuracy 87.6% 93.9% 86.0% 92.8% 94.0% 90.2%
Precision 37.3% 61.7% 34.0% 90.0% 75.0% 40.7%

Recall 91.9% 54.4% 89.0% 6.6% 33.1% 61.0%
PFA 12.8% 2.8% 14.3% 0.1% 0.9% 7.4%

F-Score 53.1% 57.8% 49.2% 12.3% 45.9% 48.8%
G-Score 89.5% 69.8% 87.3% 12.4% 49.6% 73.5%

Flight
Mission
IV&V
Issues

Supervised System TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM
Accuracy 70.2% 73.3% 79.3% 82.2% 82.5% 73.6%
Precision 58.4% 61.2% 71.2% 90.1% 80.0% 67.9%

Recall 94.9% 95.5% 83.4% 63.7% 76.4% 67.5%
PFA 47.1% 42.2% 23.6% 4.9% 13.3% 22.2%

F-Score 72.3% 74.6% 76.8% 74.6% 78.2% 67.7%
G-Score 67.9% 72.0% 79.7% 76.3% 81.2% 72.3%

Flight
Mission

Developers
Issues

Supervised System TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM
Accuracy 68.0% 64.9% 62.3% 66.0% 70.6% 59.9%
Precision 48.9% 66.7% 73.4% 65.9% 71.2% 73.0%

Recall 94.4% 93.2% 66.9% 100.0% 92.9% 61.9%
PFA 82.6% 89.7% 46.7% 99.5% 72.3% 44.0%

F-Score 79.5% 77.7% 70.0% 79.5% 80.6% 67.0%
G-Score 29.4% 18.5% 59.3% 1.0% 42.7% 58.8%

performance. Last but not least, Bayesian Network clas-

sifier performance varied significantly across datasets,

with the best performance for one of the datasets, but

very bad performance for other datasets.

Next, we present the results related to RQ1c, which is

focused on determining the amount of data that must be set

aside for training in order to produce good classification re-

sults. For this part of our study, we restricted the experiments

to the learning system consisting of the binary bag-of-words

feature vector (BF) and the Naive Bayes (NB) classifier as

it had consistently good performance across all datasets. As

shown in Table VI, the best performance with respect to the

G-Score for the Ground Mission IV&V Issues dataset was

when 90% of the dataset was used for training. However,

using less data for training, including as little as 25%, led

to almost as good performance as in the case of 90% of the

data used for training. Interestingly, for the Flight Mission

IV&V Issues dataset the best performance was when using

only 25% of the data for training. Similarity, for the Flight

Mission Developers Issues dataset the best performance was

achieved when only 50% of the data were used for training,

with insignificant performance degradation when only 25%

of data were used for training. This is an important results

of our study, with a significant practical value. It shows

that the learner system is able to produce similar or even

better classification results with only 25% of the data being

manually labeled and used for training (i.e., building the

classification model).

B. Results of unsupervised learning

In this section we present the results related to RQ2, which

is focused on exploring if unsupervised machine learning

approach described in section III-D can be used to classify

software bug reports as security related or non-security

related. Table VII shows the results of the unsupervised

learning, using the BF, TF, and TF-IDF feature vectors and

Table VI. PERFORMANCE OF BF NB ON TRAINING SETS WITH

DIFFERENT SIZES. FOR EACH DATASET, THE COLUMN CORRESPONDING

TO THE CLASSIFIER WITH THE BEST G-SCORE IS SHOWN IN BOLD.

Ground Mission
IV&V Issues

% of Issues
for Training 90% 75% 50% 25%

Accuracy 87.2% 86.3% 85.6% 86.7%
Precision 36.7% 38.9% 34.0% 36.9%
Recall 93.4% 92.5% 94.1% 93.5%
PFA 13.3% 14.3% 15.1% 13.9%
F-Score 52.7% 54.8% 50.0% 52.9%
G-Score 89.9% 89.0% 89.3% 89.6%

Flight Mission
IV&V Issues

% of Issues
for Training 90% 75% 50% 25%

Accuracy 70.7% 71.6% 76.4% 77.3%
Precision 59.1% 83.7% 87.5% 90.5%
Recall 93.0% 54.2% 66.7% 68.3%
PFA 44.9% 10.6% 11.6% 10.1%
F-Score 72.3% 65.8% 75.7% 77.8%
G-Score 69.2% 67.5% 76.0% 77.6%

Flight Mission
Developers Issues

% of Issues
for Training 90% 75% 50% 25%

Accuracy 66.9% 62.7% 65.1% 66.0%
Precision 77.7% 80.3% 78.5% 75.9%
Recall 69.8% 58.9% 64.2% 71.1%
PFA 38.6% 29.5% 33.3% 43.8%
F-Score 73.5% 68.0% 70.6% 73.4%
G-Score 65.3% 64.2% 65.4% 62.8%

cosine similarity, for all three datasets. The threshold values

selected from the validation sets are also shown. It should

be noted that the threshold values did not vary significantly

across different feature vectors or different datasets.

The results showed that TF-IDF feature vector led to

better G-Score in case of the Ground Mission IV&V Is-

sues dataset, while TF feature vector led to better G-

Score for both Flight Mission datasets. Unlike in the case

of supervised learning, BF feature vector underperformed

compared to TF feature vector. Consistently with supervised

learning results presented in Section V-A, the unsupervised

classification performance differed across the three datasets,

with the best performance in the case of Ground Mission

IV&V Issues dataset and worst performance for the Flight

Mission Developers Issues dataset. Different performance

across different datasets was mainly due to the amount of

352

Table VII. CLASSIFICATION PERFORMANCE OF UNSUPERVISED LEARNING. FOR EACH DATASET, THE COLUMN CORRESPONDING TO THE CLASSIFIER

WITH THE BEST G-SCORE IS SHOWN IN BOLD.

Dataset Ground Mission
IV&V Issues

Flight Mission
IV&V Issues

Flight Mission
Developers Issues

Feature vector BF TF TF-IDF BF TF TF-IDF BF TF TF-IDF
Selected Threshold 0.305 0.286 0.263 0.283 0.216 0.235 0.321 0.260 0.220
Accuracy 62.5% 64.3% 73.0% 64.9% 67.8% 49.2% 50.4% 55.4% 51.7%
Precision 12.6% 15.0% 17.7% 57.5% 58.1% 41.2% 70.2% 69.3% 65.9%
Recall 66.2% 78.7% 69.9% 56.1% 77.7% 55.4% 42.7% 57.9% 55.1%
PFA 37.8% 36.9% 26.7% 28.9% 39.1% 55.1% 34.8% 49.4% 54.9%
F-Score 21.2% 25.2% 28.3% 56.8% 66.5% 47.3% 51.6% 63.1% 60.0%
G-Score 64.1% 70.0% 71.5% 62.7% 68.3% 49.6% 53.1% 54.0% 49.6%

Table VIII. PERFORMANCE COMPARISON OF SUPERVISED LEARNING WITH NB CLASSIFIER (USING 10-CROSS VALIDATION) AND UNSUPERVISED

LEARNING

Dataset Ground Mission
IV&V Issues

Flight Mission
IV&V Issues

Flight Mission
Developer Issues

Feature vector BF TF TF-IDF BF TF TF-IDF BF TF TF-IDF
Supervised G-Score 89.9% 84.2% 87.3% 69.2% 75.1% 79.7% 65.3% 61.4% 59.3%
Unsupervised G-Score 64.1% 70.0% 71.5% 62.7% 68.3% 49.6% 53.1% 54.0% 49.6%

security related information provided in the bug reports (see

Section IV).

C. Comparisons of supervised and unsupervised learning
performance

Next, we focus on comparing the performance of super-

vised and unsupervised classification of software bugs to

security related and non-security related, that is, address

RQ3. Table VIII compares the G-score values of the su-

pervised learning using the NB classifier (which showed

consistently good performance across the three datasets)

with the unsupervised learning based on Cosine Similarity,

for the three types of feature vectors.

As expected, the unsupervised learning performed slightly

worse than the supervised learning based on the best per-

forming classifier or classifier (such as NB) that performed

consistently well across all datasets. Note however, that the

unsupervised learning does not require manual labeling of

the data. Having in mind that supervised learning performed

very well with only 25% of the data being labeled for

training and provided somewhat better results, the choice

of the learning approach becomes a tradeoff between better

results at expense of initial effort invested in labeling one

quarter of the data.

Next, we compare our results with related works’ results

to the extent allowed by the reported performance metrics in

these works. The proposed supervised approach, even with

only 25% of the data used for training, had significantly

higher recall than related works [6], [8], and comparable

PFA and significantly higher G-Score than [8]. The unsuper-

vised learning approach also produced much higher recall

values than related works [6], [8] and similar values of

PFA and G-score to the ones reported in [8] for the best

combinations of filters and learners.

It should be noted that models that result in high recall

and low to moderate precision are useful in the following

situations: (1) In mission critical or security applications,

high recall may be demanded, regardless of the precision

and PFA, as the cost of false negatives is much higher than

the cost of false positives. (2) When the cost of checking

false positives is not high [29]. Our future work is focused

on exploring approaches that may improve the classification

performance, with specific focus on decreasing the number

of false positives, which would increase the precision and

decrease PFA.

VI. THREATS TO VALIDITY

Construct validity is concerned with whether we are

measuring what we intend to measure. Consistent with their

intended usage, most of the textual descriptions in bug

reports are focused on how the bugs were found, their

manifestation, and how they were fixed. Consequently, the

security aspects of a software bug description were often

a small detail within each bug report, or were not even

present. Because of this, each feature vector contained only

a very few terms (as small as one) related to the security

aspect and the rest was noise from the perspective of

automated classification. We attempted to address this threat

by using a vocabulary extracted from the CWE-888 view,

which minimized the amount of noise in feature vectors.

This approach, however, may have a drawback related to

the terminology used in bug reports. Specifically, if the

documents being classified use security related terminology

that does not exist in the CWE-888 view, then those terms

are not being extracted, and therefore would not affect the

classification. Based on the manual classification of bug

reports, which we completed as a part of our prior work

[11] and used as a ground truth in this paper, this did not

appear to be the case in our datasets.

Internal validity threats are concerned with unknown

influences that may affect the independent variables. One of

the major concerns to the internal validity is data quality.

353

Some guarantee for the quality and consistency of our

datasets are due to the fact that NASA missions follow high

record keeping standards.

Conclusion validity threats impact the ability to draw

correct conclusions. Quantifying and comparing the perfor-

mance of learning systems are difficult tasks because many

different performance metrics exist that reflect different as-

pects of the performance. In this work we report all metrics,

but used the G-Score as the main metric for comparison of

the automated classifications. This is due to the fact that

G-Score integrates in one number the two most important

performance metrics: recall and probability of false alarm.

External validity is concerned with the ability to gener-

alize results. The facts that (1) this study is based on two

large NASA missions containing around one million lines of

code each and (2) the missions were developed by different

teams over multiple years, allow for some degree of external

validation. However, we do not claim that the findings of this

paper would be valid for other software systems. Therefore,

the external validity should be established by future studies

that will use other software products as case studies.

VII. CONCLUSION

While multiple prior works used text mining for automat-

ing different tasks related to software bug reports, very

little work exists on using text-based prediction models

to automatically identify security related bug reports. This

paper is focused on automated classification of software bug

reports to security related and non-security related, using

both supervised and unsupervised approaches.

For both approaches we used three types of feature vec-

tors: Binary Bag-of-Words Frequency (BF), Term Frequency

(TF), and Term Frequency-Inverse Document Frequency

(TF-IDF). For the supervised approach, we used six learning

algorithms (i.e., Bayesian Network, k-Nearest Neighbor,

Naive Bayes, Naive Bayes Multinomial, Random Forest,

and Support Vector Machine) in combination with the three

types of feature vectors. A unique to our work is the fact

that we experimented with training sets with different sizes

(i.e., 90%, 75%, 50%, and 25% of the whole dataset) to

determine the smallest size of the training set that produces

good classification results.

Furthermore, we proposed a novel unsupervised approach

for identification of security bug reports, which is based

on the concept of anomaly detection and does not require

labeled training set. Specifically, we approached this as one-

class classification, and classified bug reports similar to

the descriptions of vulnerability classes from the Common

Weakness and Enumeration (CWE) view CWE-888 as se-

curity related.

We evaluated the proposed supervised and unsupervised

approaches on three datasets extracted from the issue track-

ing systems of two NASA missions. The evaluation results

led to the following main findings:

• Multiple supervised learning systems, consisting of

different combinations of feature vectors and super-

vised learning algorithms, performed well. It appears

that supervised classification is affected more by the

learning algorithms than by feature vectors. Some

learning algorithms performed better than others; the

best performing algorithm was different for different

feature vectors and different datasets. In general, the

Naive Bayes algorithm performed consistently well,

among or close to the best performing algorithms across

all feature vectors and datasets.

• Supervised classification of bug reports was just as

good with only 25% of the data used for training as

with using 90% for training (i.e., the standard 10-fold

cross validation). This finding has important practical

implications because the manual labeling of the bug re-

ports in the training set is a tedious and time consuming

process.

• Unsupervised learning based on anomaly detection can

be used for bug report classification, but it had slightly

worse performance (with respect to G-Score) than the

supervised learners. Note however that the better perfor-

mance of the supervised learning comes at the expense

of manual labeling the bug reports in the training set.

• The performance of the classification, both supervised

and unsupervised, differed across the three datasets.

This was mainly due to the different amounts of se-

curity related information provided in the textual fields

of the bug reports. Interestingly, the lack of security

related information affected the performance more sig-

nificantly than the class imbalance problem. Thus, the

classification performed the best on the Ground Mission

IV&V Issues dataset, which had more security relevant

information in the descriptions, even though this was

the most imbalanced dataset (with only 7% of bug

reports being security related).

In general, the results presented in this paper showed that

automated identification of security related bug reports holds

a great potential. Our future work is focused on exploring

approaches that may further improve the classification per-

formance and applying the automated classification to other

NASA and open source datasets.

ACKNOWLEDGMENTS

This work was funded in part by the NASA Software

Assurance Research Program (SARP) and by the NSF grant

CNS-1618629. Any opinions, findings, and recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the funding agencies.

The authors thank the following NASA personnel for their

support: Brandon Bailey, Craig Burget, and Dan Painter. The

authors also thank Tanner Gantzer for his assistance.

354

REFERENCES

[1] N. Jalbert and W. Weimer, “Automated duplicate detection for
bug tracking systems,” in Proceedings of the 2008 IEEE In-
ternational Conference on Dependable Systems and Networks
(DSN), June 2008, pp. 52–61.

[2] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck,
“Comparing mining algorithms for predicting the severity of
a reported bug,” in Proceedings of the 15th European Confer-
ence on Software Maintenance and Reengineering (CSMR),
March 2011, pp. 249–258.

[3] K. Somasundaram and G. C. Murphy, “Automatic categoriza-
tion of bug reports using Latent Dirichlet Allocation,” in Pro-
ceedings of the 5th India Software Engineering Conference
(ISEC’12), 2012, pp. 125–130.

[4] M. M. Ahmed, A. R. M. Hedar, and H. M. Ibrahim, “Pre-
dicting bug category based on analysis of software repos-
itories,” in Proceedings of the 2nd International Confer-
ence on Research in Science, Engineering and Technology
(ICRSET’2014), 2014, pp. 44–53.

[5] L. Layman, A. P. Nikora, J. Meek, and T. Menzies, “Topic
modeling of NASA space system problem reports: Research
in Practice,” in Proceedings of the 13th International Confer-
ence on Mining Software Repositories (MSR’16), 2016, pp.
303–314.

[6] D. Wijayasekara, M. Manic, and M. McQueen, “Vulnera-
bility identification and classification via text mining bug
databases,” in Proceedings of the 40th Annual Conference of
the IEEE Industrial Electronics Society (IECON 2014), Oct
2014, pp. 3612–3618.

[7] D. Behl, S. Handa, and A. Arora, “A bug mining tool to
identify and analyze security bugs using Naive Bayes and
TF-IDF,” in Procedings of the 2014 International Confer-
ence on Optimization, Reliabilty, and Information Technology
(ICROIT), Feb 2014, pp. 294–299.

[8] F. Peters, M. Thein T. Tun, Y. Yu, and B. Nuseibeh, “Text
filtering and ranking for security bug report prediction,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–
1, 2017, IEEE Early Access Articles.

[9] N. Mansourov, “Software fault patterns: To-
wards formal compliance points for CWE,”
2011, [online] https://buildsecurityin.us-
cert.gov/sites/default/files/Mansourov-SWFaultPatterns.pdf.

[10] “CWE-888: Software Fault Pattern (SFP) clusters, MITRE
Corporation,” https://cwe.mitre.org/data/graphs/888.html.

[11] K. Goseva-Popstojanova and J. Tyo, “Security vulnerability
profiles of mission critical software: Empirical analysis of
security related bug reports,” in Proceedings of the 28th IEEE
International Symposium on Software Reliability Engineering
(ISSRE 2017), 2017, pp. 152–163.

[12] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-
G. Guéhéneuc, “Is it a bug or an enhancement?: A text-
based approach to classify change requests,” in Proceedings
of the 2008 Conference of the Center for Advanced Studies
on Collaborative Research: Meeting of Minds (CASCON’08),
2008, pp. 23:304–23:318.

[13] I. Chawla and S. K. Singh, “An automated approach for bug
categorization using fuzzy logic,” in Proceedings of the 8th
India Software Engineering Conference (ISEC’15), 2015, pp.
90–99.

[14] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden,
“Software vulnerability prediction using text analysis tech-
niques,” in Proceedings of the 4th International Workshop on
Security Measurements and Metrics (MetriSec’12), 2012, pp.
7–10.

[15] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen,
“Predicting vulnerable software components via text mining,”
IEEE Transactions on Software Engineering, vol. 40, no. 10,
pp. 993–1006, Oct 2014.

[16] H. Packard, “Fortify static code analyser,” 2015, [online]
http://www8.hp.com/us/en/software-solutions/static-code-
analysis-sast/.

[17] K. Goseva-Popstojanova and A. Perhinschi, “On the capabil-
ity of static code analysis to detect security vulnerabilities,”
Information and Software Technology, vol. 68, no. C, pp. 18–
33, Dec 2015.

[18] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi,
K. Rieck, S. Fahl, and Y. Acar, “VCCFinder: Finding po-
tential vulnerabilities in open-source projects to assist code
audits,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS’15), 2015,
pp. 426–437.

[19] D. A. Wheeler, “Flawfinder,” 2016, [online]
http://www.dwheeler.com/flawfinder/.

[20] J. A. Wang and M. Guo, “Vulnerability categorization using
Bayesian Networks,” in Proceedings of the 6th Annual Work-
shop on Cyber Security and Information Intelligence Research
(CSIIRW ’10), 2010, pp. 29:1–29:4.

[21] M. Gegick, P. Rotella, and T. Xie, “Identifying security
bug reports via text mining: An industrial case study,” in
Procedings of the 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), May 2010, pp. 11–20.

[22] J. L. Wright, J. W. Larsen, and M. McQueen, “Estimating
software vulnerabilities: A case study based on the misclas-
sification of bugs in MySQL server,” in Proceedings of the
8th International Conference on Availability, Reliability and
Security (ARES), Sept 2013, pp. 72–81.

[23] “Common Vulnerability Scoring System (CVSS),” 2015, The
Forum of Incident Response and Security Teams (FIRST);
https://www.first.org/cvss.

[24] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen,
“Mining bug databases for unidentified software vulnerabil-
ities,” in Procedings of the 5th International Conference on
Human System Interactions, June 2012, pp. 89–96.

[25] “NLTK project, Natural Language Toolkit,” 2016, [online]
http://www.nltk.org/.

[26] “Python Software Foundataion, Python,” 2016, [online]
https://www.python.org/.

[27] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58,
Jul. 2009.

[28] L. Manevitz and M. Yousef, “One-class document classifi-
cation via Neural Networks,” Neurocomputing, vol. 70, pp.
1466 – 1481, 2007.

[29] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,
“Problems with precision: A response to” comments on’data
mining static code attributes to learn defect predictors’”,”
IEEE Transactions on Software Engineering, vol. 33, no. 9,
pp. 637–640, 2007.

355

